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Abstract  

 

The Movie Recommendation System implemented in this project makes use of the latest 

technologies and machine learning algorithms to provide a culturally diverse and engaging 

movie-watching experience. Three user modules content manager, content supervisor, and 

movie enthusiast are supported by the system, which was built using Python for machine 

learning components, Nest.js for endpoints, and React.js for the frontend.  The pivotal 

functionality revolves around content-based filtering utilizing cosine similarity, thereby 

augmenting the precision of movie suggestions. The user interface allows for diverse 

interactions such as movie searches, detailed exploration, trailer viewing, commenting, and 

rating. In the machine learning domain, web scraping is used to gather data in order to create 

an extensive database of movie information. Preprocessing includes cleansing, 

normalization, and addressing missing values for the data that has been gathered. To extract 

pertinent data from the dataset, feature extraction is used. After that, textual data is 

processed via tokenization, which makes it easier to extract useful features. By computing 

their similarity scores, movies' degrees of resemblance are determined using cosine 

similarity. By recognizing films with similar qualities, this similarity metric helps to 

improve recommendation accuracy. The frontend easily incorporates the computed 

similarity ratings, enhancing the user experience by offering tailored and contextually 

appropriate movie recommendations. Evaluation metrics are used to evaluate the 

effectiveness of the recommendation system, including recall, precision, and F1 score. With 

its selection of Hindi, English, and Nepali films, the Movie Recommendation System not 

only satisfies modern user expectations but also highlights cultural diversity. By adding 

this, the underrepresentation of regional material in recommendation systems is lessened 

and the variety of recommended films is increased. To sum up, this movie recommendation 

system combines state-of-the-art technology, machine learning algorithms, and a 

multicultural perspective to provide a dynamic and tailored cinematic experience. By 

incorporating sophisticated assessment indicators, the system's performance is thoroughly 

evaluated, ensuring that consumers receive personalized and superior movie 

recommendations. 

 

Keywords: Similarity, Recommendation, Analysis, Movies, IMDB, Octoparse, Kaggle 
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Chapter 1: Introduction 

 

1.1 Introduction 

 

The Movie Recommendation System is a user-focused platform created to help people find 

and explore films that fit their preferences. Users can quickly search for films that interest 

them and receive suggestions based on their searched movie. The system uses sophisticated 

algorithms, such as the content-based filtering algorithm, to deliver seamless and enjoyable 

movie discovery experiences. The data used in the system were collected from reputable 

sources, including IMDb datasets through web scraping using Octoparse, ensuring a diverse 

and comprehensive movie database for accurate recommendations. It contains movies in 

three different languages: Nepali, Hindi, and English. 

This system also includes a valuable review adding feature that allows users to review 

movies by commenting and rating them. Additionally, the system is built with three 

different user roles: Content Supervisor, Content Manager, and Movie Enthusiast, which 

helps manage the system in different ways. The Content Manager can add movies, which 

must be approved by the Content Supervisors, ensuring a meticulous curation process that 

maintains the integrity, quality, and relevance of the movie database. This approval 

mechanism guarantees that only content meeting predefined criteria and aligning with the 

platform's standards is introduced, enhancing the overall user experience and upholding the 

system's commitment to excellence. This empowers users to make well-informed decisions 

about which movies to watch, ultimately enhancing their overall movie-watching 

experience. 

The system utilizes Python Flask for implementing the machine learning algorithm and the 

recommendation API, while it also uses Nest.js for creating endpoints of the system as the 

backend and React for the frontend, resulting in a seamless and user-friendly interface. User 

and movie data are efficiently stored in a MySQL database, ensuring data integrity and 

dependable system performance. With its user-centric approach, the Movie 

Recommendation System aims to be an unbiased and indispensable companion for movie 

enthusiasts seeking to discover the perfect films for their entertainment pleasure. With a 

strong focus on user satisfaction and an ever-growing repository of movie data, the Movie 

Recommendation System aspires to be the go-to platform for all movie enthusiasts seeking 

an enriched and enjoyable cinematic experience.  
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1.2 Problem Statement 

 

1. Limited user contributions and engagement in content addition. 

2. Lack of meticulous curation in traditional movie recommendation systems. 

3. Underrepresentation of Cross-Language Recommendations especially Nepali 

movies. 

 

1.3 Objectives 

 

The objective is to create a user-focused platform for movie recommendations, integrating 

content-based filtering using React js for frontend, Nest js for backend and python for 

implementing the cosine similarity algorithm, and ensuring data security and continuous 

improvement. 

 

1.4 Scope and Limitations 

 

1.4.1 Scope 

1. Comprehensive Movie Recommendations: The system will aim to provide 

personalized and relevant movie recommendations to users based on their 

preferences and behavior. 

2. User-Friendly Interface: The platform will offer a user-friendly interface with 

intuitive navigation and search functionalities for an enhanced user experience. 

3. Diverse Movie Database: The system will integrate a comprehensive movie 

database from reputable sources, ensuring a wide range of movie options for users. 

Continuous Improvement: The platform will be designed for continuous 

improvement, incorporating user feedback and updates to enhance functionality and 

features. 

 

1.4.2 Limitations 

1. Genre Dependency: This refers to a system's reliance on movie genres as a primary 

factor for recommendations. Such systems may struggle when users have eclectic 

tastes that span multiple genres. 
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2. Metadata Accuracy: It pertains to the precision and reliability of the data used for 

recommendations. If the metadata describing movies is inaccurate or incomplete, 

the system's ability to provide relevant suggestions is compromised. 

3. Collaborative Limitation: This points to a constraint in collaborative filtering 

methods, where recommendations are based on user behavior and preferences. It 

may face challenges when dealing with new or niche items or when user interactions 

are sparse, limiting the accuracy of suggestions 

4. Algorithm Accuracy: The movie recommendation algorithm's accuracy may vary, 

and some users may receive recommendations that do not align with their tastes. 

5. Scalability: As the user base grows, the system's performance may face challenges 

in handling increased traffic and generating real-time recommendations. 

6. User Privacy Concerns: Despite efforts to ensure data security, there may still be 

concerns about user privacy when collecting and storing user data. 

 

1.5 Development Methodology  

 

The movie recommendation app was created using the straightforward and sequential 

Waterfall Software Development Life Cycle model. 

 

Figure 1 Waterfall Model 
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1. Requirement Analysis: All the requirements for making a Movie 

Recommendation System including time and resource needs, are listed. These 

consist of an IDE for coding, a database for storing and retrieving data, and an OS 

for running the program. 

2. Design: The design of this Movie Recommendation System was done using Figma 

which is an online tool to design high and low-fidelity images/ diagrams. 

3. Development: The development phase consists of coding a function or a module. 

In this, every class was made for the system, and their functions were added to the 

next iterations  

4. Testing: After development of each module it was tested and if any test failed it 

was revised and the problem was found out and tested again until it is solved. 

5. Deployment: The system was tested and reviewed and verified by the subject 

teacher i.e., our supervisor every week in the development process. 

 

1.6 Report Organization 

 

This report consists of five chapters which will cover the designing and the development of 

Movie Recommendation System. 

Chapter One: This chapter includes the system and the problems, given an overview about 

the study. It includes introduction, problem of statement, objectives, and solution of the 

website. 

Chapter Two: This chapter covers the literature review which is the previous related work 

that has been done before. It also includes the description of the website where we have 

taken the reference. 

Chapter Three: This chapter explains the selected methodology that we are going in this 

project. This chapter shows the design of the system. It includes ER- Diagram, State 

Diagram, Sequence Diagram, Activity Diagram etc. 

Chapter Four: This chapter discusses the implementation and testing. It includes the 

overall description of the modules that we have implemented into our application. We have 

shown the test cases. 

Chapter Five: This chapter discusses the conclusion, recommendation and future works to 

improve this study.  
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Chapter 2: Background Study and Literature Review 

 

2.1 Background Study 

 

The background study of the movie recommendation system with review analysis focuses 

on evaluating and analyzing the strengths and weaknesses of current movie 

recommendation systems. This study aims to explore their methods for user review analysis 

and identify areas for enhancement. To conduct this research, we will gather and analyze 

relevant literature, research papers, and articles related to movie recommendation systems 

that incorporate user reviews and sentiment analysis. Additionally, we will assess the 

performance and user satisfaction of existing systems like Netflix and Amazon Prime, 

comparing them with platforms that utilize review analysis, such as IMDB, TMDB, and 

Rotten Tomatoes. The findings from this study will serve as a foundation for improving the 

proposed Movie Recommendation System and addressing any identified gaps and 

opportunities for enhancement. Some of the key aspects that we will evaluate in existing 

systems include: 

1. User Review Analysis Techniques: 

 What techniques are currently used to analyze user reviews and sentiments? 

 How accurate and effective are these techniques in predicting user preferences and 

providing personalized recommendations? 

 What are the limitations of these techniques, and how can they be improved? 

2. Recommendation Algorithms: 

 What algorithms are currently used to generate movie recommendations? 

 How do these algorithms incorporate user review analysis, and what impact does 

this have on their performance? 

 How can these algorithms be improved to provide more personalized and accurate 

recommendations? 

3. User Satisfaction and Engagement: 

 How satisfied are users with existing movie recommendation systems? 

 How do they perceive the impact of user review analysis on their movie-watching 

experience? 

 What factors influence user engagement and retention, and how can they be opti-

mized? 
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We can find the best practices and new techniques, as well as the gaps and chances for 

improvement in movie recommendation systems using review analysis, by conducting a 

complete analysis of the existing systems. 

 

2.2 Literature Review 

 

The literature on movie recommendation systems is vast and encompasses a wide array of 

approaches and techniques to enhance user experiences and provide personalized 

recommendations. One prominent direction that has emerged is the utilization of deep 

learning-based recommender systems, which leverage their capacity to process vast 

amounts of data and understand complex user-item interactions [1]. 

Collaborative filtering algorithms have also been extensively studied and compared to 

determine their effectiveness in making recommendations [2]. These algorithms work by 

identifying patterns and similarities between users or items to generate relevant 

suggestions. 

Online platforms like IMDb play a significant role in the realm of movie recommendation 

systems. IMDb provides ratings, reviews, and essential information about movies and TV 

shows, supporting users in their decision-making process [3]. 

As recommender systems continue to evolve, research on aspects like content-based 

filtering, context-aware filtering, and sentiment analysis remains an active area. These areas 

hold promise in further enhancing recommendation accuracy and personalization. [4] 

Different algorithms for content based filtering were researched like cosine similarity, KNN 

etc. [5] 

Sentiment analysis has been proposed as a valuable tool to augment recommender systems 

by considering user sentiment and feedback. By analyzing user reviews and ratings, 

sentiment analysis can aid in making more accurate recommendations that align with users' 

preferences and emotions [6]. 

Connected papers and academic resources contribute to the consolidation of research efforts 

and facilitate deeper insights into the challenges and potential advancements in 

recommender systems. Access to such resources enables researchers and practitioners to 

stay up-to-date with the latest developments in the field [7].  
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To create movie recommendation systems, various resources are available, including 

tutorials and guides that explore techniques like weighted hybrid approaches and creating 

recommendation systems using nearest neighbors [8][9]. These tutorials offer practical 

insights into building effective recommendation systems. 

Cosine similarity and cosine distance have been widely used in measuring similarity 

between items and users to produce accurate and relevant recommendations [10]. These 

similarity metrics are fundamental in collaborative filtering and content-based filtering 

approaches. 

The integration of APIs, such as Flask for back-end development, React for front-end, and 

MySQL for efficient data storage, enables the seamless functioning of movie 

recommendation systems [11] Utilizing these technologies streamlines the development 

process and allows for scalability and robustness in handling large datasets. 

While significant strides have been made in movie recommendation systems, there remains 

a need for further exploration and development of reliable evaluation metrics to assess the 

performance and user satisfaction of recommender systems [12]. Robust evaluation metrics 

are essential to gauge the effectiveness of different recommendation algorithms 

accurately[13]. 

From deep learning-based approaches to collaborative filtering algorithms, sentiment 

analysis, and diverse filtering techniques, researchers and developers continue to explore 

ways to create robust and user-centric movie recommendation systems [15][16]. 

In conclusion, the literature review showcases a diverse landscape of techniques and 

methodologies in the movie recommendation systems domain. The integration of APIs and 

the availability of online platforms like IMDb play crucial roles in supporting these efforts. 

Further research in context-aware filtering, explainability, cold-start problems, dataset 

biases, and resource optimization is expected to shape the future of recommender systems.  
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Chapter 3: System Analysis and Design 

 

3.1 System Analysis 

  

3.1.1 Requirement Analysis 

Requirement analysis is a crucial step in the development of any software system, including 

Movie Recommendation System. The following are some of the key requirements for a 

movie recommendation system: 

1. Data collection: The system should have the capability to collect data from various 

sources, including user reviews, ratings, and other relevant information. 

2. Data preprocessing: The collected data needs to be cleaned, filtered, and trans-

formed into a format suitable for analysis. This involves removing irrelevant or du-

plicated data, converting the data into a standardized format, and performing other 

necessary preprocessing steps. 

3. Tokenization: The text data undergoes tokenization, a crucial step where the raw 

text is broken down into smaller units called tokens, such as words or phrases. This 

process facilitates the analysis of textual information by converting it into a more 

manageable and structured form. 

4.  Feature Extraction: Extracting relevant features from the processed data is essential 

for building effective models. Feature extraction involves selecting and transform-

ing the most significant characteristics of the data, enabling the model to focus on 

key aspects during analysis and enhancing the overall performance of the system. 

5. Machine learning algorithms: The system should employ machine learning algo-

rithms to learn from the user data and make better recommendations. These algo-

rithms can include collaborative filtering, content-based filtering, or hybrid ap-

proaches. 

6. Evaluation metrics: The system should have appropriate evaluation metrics to as-

sess the quality of the recommendations. This can include metrics such as precision, 

recall, and f1_score. 

7. User interface: The system should have a user-friendly interface that allows users 

to easily provide feedback, rate movies, and view personalized recommendations. 

8. Scalability: The system should be scalable to handle large amounts of data and 

growing user bases. 
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9. Security: The system should ensure the privacy and security of the user data, in-

cluding encryption, access control, and authentication mechanisms. 
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Figure 2 Use Case Diagram of Movie recommendation system 
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3.1.2 Feasibility Analysis (Technical, operational, economic) 

In feasibility study, the Movie Recommendation System’s technical, operational, financial, 

& legal factors are analyzed. 

 i. Technical 

The technical feasibility study aims to determine if the proposed movie 

recommendation system with review analysis is technically possible within the 

constraints of available technology and resources. The required software and hardware 

components will be assessed in terms of their compatibility, availability, and cost-

effectiveness. The technical team will conduct tests to evaluate the performance, 

scalability, and reliability of the system. 

ii. Operational 

The operational feasibility study aims to determine whether the proposed movie 

recommendation system with review analysis can be integrated and implemented 

within the existing organizational processes and practices. The operational team will 

assess the impact of the proposed system on the current workflow, staff training needs, 

and user acceptance. The team will also analyze the system's maintenance and support 

requirements to ensure the system's sustainability. 

iii. Economic 

The economic feasibility study aims to determine the financial viability of the proposed 

movie recommendation system with review analysis. The economic team will analyze 

the system's development, implementation, and operational costs and compare them 

with the potential benefits and returns. The team will also evaluate the system's long-

term profitability, potential risks, and impact on the organization's financial stability. 

Based on the analysis, the team will determine if the proposed system is financially 

feasible and justifiable. 
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3.1.3 Data Modelling (ER-Diagram) 

 

Figure 3 ER Diagram of Movie Recommendation System 

 

In the entity-relationship diagram (ERD) of the movie recommendation system, the USER 

entity serves as the central hub, capturing user details such as names, email addresses, and 

roles like superadmin, admin, or user. Each user is associated with multiple COMMENT 

entities, reflecting their engagement with movies through reviews and ratings. The MOVIE 

entity encapsulates comprehensive information about each film, including its title, release 

year, runtime, description, genre, and director. Users and movies are linked through the 

COMMENT entity, where users express their sentiments and provide ratings for specific 

films. The system accommodates diverse roles, ensuring that superadmins have control 

over movie approval status, marked by the SUPER_ADMIN_APPROVED attribute. 

Additionally, the AUTH entity includes fields for password reset tokens and expiration 

timestamps, enhancing user account security. This ERD enables seamless data flow, 

facilitating user interactions, personalized movie recommendations, and content based 

filtering based recommendations.  
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3.1.4 Object Modelling using Class and Object Diagrams 

 

Figure 4 Class Diagram of Movie Recommendation System 

 

The class diagram captures the essential entities and their relationships within the movie 

recommendation system. The `User` class represents users with attributes such as user ID, 

names, email, and authentication details. Users can engage with the system by commenting 

(`Comment` class), expressing opinions and ratings for movies. The `Movie` class 

encapsulates movie details, including title, genre, director, and status. Users are associated 

with comments through a "makes" relationship, and movies are linked to comments through 

a "hasComments" relationship, establishing the core interactions in the system. The 
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diagram highlights the connections between users, movies, and comments, providing a 

foundational understanding of the movie recommendation system's architecture.  

 

 

Figure 5 Object Diagram Movie Recommendation System 

 

The object diagram provides a snapshot of instances within the movie recommendation 

system, focusing on the `User`, `Movie`, and `Comment` classes. Users (`user1`, `user2`) 

are associated with comments they make (`comment1`, `comment2`). Similarly, movies 

(`movie1`, `movie2`) are linked to comments they receive. To represent the connection 

between users, movies, and comments, an `Interaction` class is introduced, where instances 
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(`interaction1`, `interaction2`) encapsulate specific interactions, showcasing relationships 

at a particular moment. This design allows for a dynamic representation of how users 

interact with movies through comments in the context of the movie recommendation 

system. 
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3.2 Dynamic Modelling using State and Sequence Diagrams 

 

3.2.1 State Diagram 

  

 

Figure 6 State Diagram of Movie Recommendation System  
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This state diagram captures the essential functionalities of a movie recommendation system 

involving three key entities: Users, Content Managers, and Content Supervisors. Users can 

seamlessly navigate through the system by logging in, searching for movies, receiving 

recommendations, giving ratings, and adding comments, concluding with a logout. Content 

Managers play a pivotal role in the system, initiating review requests for movies they wish 

to add. They can subsequently review the status of their requests, either receiving approvals 

or rejections from Content Supervisors. The Content Supervisor state revolves around 

managing these review requests, allowing for the approval or rejection of movies submitted 

by Content Managers. Additionally, the sign-up process is illustrated, providing a 

comprehensive overview of the system's dynamics and user interactions. 

. 
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3.2.2 Sequence Diagram 

 

Figure 7 Sequence Diagram of Movie Recommendation System 

 

This sequence diagram illustrates the interactions within a movie recommendation system. 

Users log in, allowing Content Managers to request movie reviews. Content Supervisors 

review these requests, and upon approval, Content Managers add the movie, notifying 

Users. Simultaneously, Users interact with the Movie Database by searching for movies, 

receiving recommendations, rating films, and adding comments. The diagram encapsulates 

the core dynamics, showcasing the seamless flow between administrative processes and 

user-driven functionalities in the system.  
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3.2.3 Interface design (UI/UX) 

 

 

Figure 8 Home Page 
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Figure 9 Movies Page 

 



21 

 

 

Figure 10 Super Admin Movie page 
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Figure 11 Movies  Details Page 
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3.2.4 Process Modelling using Activity Diagrams 

 

 

Figure 12 User Activity Diagram 
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Figure 13 Content Manager Activity Diagram 

 

 

Figure 14 Content Supervisor Activity Diagram 
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The activity diagrams depict the sequential activities within a movie recommendation 

system involving Users, Content Managers, and Content Supervisors. In the User diagram, 

a user logs in, browses movies, receives recommendations, rates films, adds comments, and 

logs out. The Content Supervisor diagram illustrates the process of reviewing and managing 

movie review requests, with the ability to approve or reject requests and add content 

managers. The Content Manager diagram focuses on the manager's activities, including 

requesting movie reviews, reviewing the status of requests, adding approved movies, and 

revising requests if necessary. These diagrams offer a concise overview of the system's 

functionalities, highlighting the dynamic interactions between users and administrators. 

 

3.3 Proposed Model 

 

Figure 15 Proposed Model 

 

3.4 Algorithm 

 

1. Content-Based Filtering: Content-Based Filtering (CBF) is a machine learning 

approach used in recommendation systems to provide personalized recommendations 

based on the inherent features and characteristics of items. In the context of movie 

recommendations, CBF analyzes the content features of movies, such as genre and 

description, to suggest items that are similar in content. 

The CBF process can be outlined as follows: 
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a. Data Collection: Movie data, including features like title, genre, and description, 

etc is collected from a data source, such as imdb by web scraping using a powerful 

web scraping tool Octoparse and stored in a database. The data is preprocessed to 

create a unified representation of movie content. 

b. Feature Combination: Relevant features, like genre and description, are combined 

into a single feature vector or text representation. For example, the 'content' feature 

may be a combination of genre and description. 

c. Vectorization: The combined content feature is transformed into a numerical 

representation using techniques like TF-IDF (Term Frequency-Inverse Document 

Frequency) vectorization. TF-IDF captures the importance of words within the 

content and creates a numerical matrix. 

Term Frequency (TF): 

   𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
      (1) 

Inverse Document Frequency (IDF): 

 IDF(t, D)  = 𝑙𝑜𝑔 (
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠  𝐷

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡
       (2) 

TF-IDF: 

 TF-IDF(t,d,D) = TF(t,d) x IDF(t,D)      (3) 

d. Similarity Calculation: The cosine similarity metric is applied to compute the 

similarity between movies based on their TF-IDF vectors. The result is a similarity 

matrix where each element represents the similarity between two movies.  

cos 𝜃 = 𝑎
→.

𝑏
→

||
𝑎
→||||

𝑏
→||

 = 
∑ 𝑛1 𝑎𝑖𝑏𝑖

√∑ 𝑛1 𝑎𝑖
2 √∑ 𝑛1 𝑏𝑖

2           (4) 

 

where, 
𝑎
→.

𝑏
→  = ∑ 𝑛1 𝑎𝑖𝑏𝑖  = 𝑎𝑖𝑏𝑖  + 𝑎2𝑏2  + … + 𝑎𝑛𝑏𝑛 is the dot product of the 

vectors. 

e. Recommendation Generation: Given an input movie title, the system identifies the 

corresponding row in the similarity matrix. Movies are sorted based on their 

similarity scores, and the top N movies (excluding the input movie) are 

recommended. 
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The recommendation generation step involves sorting movies based on their similarity 

scores and selecting the top N movies as recommendations. The similarity score between 

movies is typically calculated using the cosine similarity metric. The cosine similarity 

between two vectors A and B is computed using the formula: 

        cos(𝜃) = 𝐴.𝐵

||𝐴||||𝐵||
        (5) 

 

 A and B represent the TF-IDF vectors of two movies. 

 A⋅B denotes the dot product of the two vectors. 

 ∥A∥ and ∥B∥ represent the Euclidean norms of the vectors. 

The cosine similarity ranges from -1 (completely dissimilar) to 1 (completely similar). The 

higher the cosine similarity, the more similar the movies are in terms of their content. 

After calculating the cosine similarity scores for a given input movie against all other 

movies, the system identifies the corresponding row in the similarity matrix. Movies are 

then sorted based on their similarity scores in descending order. The top N movies, 

excluding the input movie itself, are recommended to the user. 

Here's a high-level representation of the recommendation generation process: 

 Calculate cosine similarity scores between the input movie and all other movies. 

 Identify the row in the similarity matrix corresponding to the input movie. 

 Sort movies based on their similarity scores in descending order. 

 Exclude the input movie from the recommendations. 

 Select the top N movies as the final recommendations. 

 The value of N determines the number of recommendations to be provided to the 

user. The higher the N, the more recommendations will be presented to the user. 

In summary, Content-Based Filtering leverages the content features of items (movies) to 

generate recommendations, making it suitable for scenarios where user-item interactions 

are not explicitly available. It is particularly effective for suggesting items with similar 
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content characteristics, providing a form of personalized and context-aware 

recommendations to users. 

 

3.5 Machine Learning  

 

1. Data Collection:  

For the movie recommendation system, I have collected data from imdb datasets. 

To extract the movie data, I used Octoparse to scrape the data. The data was cleaned 

and the data labels are modified according to the requirements of the system. 

Different language movies are incorporated. 

S.N. Language No. of movies 

1. Nepali 5000 

2.  Hindi 11000 

3. English 15000 

          Along with this the admin has the authority to add more movies. 

2. Data Preprocessing: 

a. Remove newline characters, brackets and extra space: 

Removes leading and trailing whitespaces from the columns. It ensures that 

there are no unnecessary spaces that might affect downstream processing. 

Also, removes parentheses from the column using a regular expression. It is 

useful if 'year' values are enclosed in brackets, ensuring that only the 

numeric part remains. 

Consider a DataFrame with the following sample data: 

       genre           description   year 

0     Action   A thrilling movie.   (1990) 

1      Drama    Emotional drama.     (2005) 

2    Romance          Love story.    (1982) 

After applying the special character removal process, the DataFrame is 

transformed as follows: 

     genre         description  year 

0   Action  A thrilling movie.  1990 

1    Drama   Emotional drama.   2005 

2  Romance         Love story.   1982 
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b. Split the "movie_cast" column into "Director" and "Stars": 

Splitting the column using the pipe ('|') as a delimiter and creates two new 

columns, containing the separated values. It assumes that 'movie_cast' has 

entries like "Director | Stars." 

Consider a DataFrame with the following sample data: 

                        movie_cast 

0  Director1 | Star1, Star2 

1  Director2 | Star3, Star4 

2  Director3 | Star5, Star6 

After applying the splitting process, the DataFrame is transformed as 

follows: 

         movie_cast    director          stars 

0  Director1 | Star1, Star2  Director1  Star1, Star2 

1  Director2 | Star3, Star4  Director2  Star3, Star4 

2  Director3 | Star5, Star6  Director3  Star5, Star6 

3. Tokenization 

Tokenization is the process of breaking down text into individual words or tokens. 

This line combines the text from the 'title', 'genre', 'director', and 'stars' columns into 

a new column called 'combined_features'. It uses the fillna('') method to handle 

missing values, ensuring that the concatenation process doesn't break when there 

are NaN values in any of the columns. 

Consider a DataFrame with the following sample data: 

   title  genre     director          stars 

0  Movie1  Action  Director1  Star1, Star2 

1  Movie2  Drama   Director2  Star3, Star4 

2  Movie3  Comedy  Director3  Star5, Star6 

After applying the tokenization process, the DataFrame is transformed as follows: 

   title  genre     director          stars                combined_features 

0  Movie1  Action  Director1  Star1, Star2  Movie1 Action Director1 Star1, Star2 

1  Movie2  Drama   Director2  Star3, Star4  Movie2 Drama Director2 Star3, Star4 

2  Movie3  Comedy  Director3  Star5, Star6  Movie3 Comedy Director3 Star5, Star6 

This 'combined_features' column contains the concatenated text from the specified 

columns, creating a unified representation of relevant information for each movie. 
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4. Vectorization: 

Vectorization is the process of converting text data into numerical vectors that can 

be used as input for machine learning algorithms.This code uses the TF-IDF (Term 

Frequency-Inverse Document Frequency) vectorizer from scikit-learn. It converts 

the text in 'combined_features' into a sparse matrix of TF-IDF features. This matrix 

represents the importance of each word (term) in the context of the entire dataset. 

# Create a TF-IDF Vectorizer 

tfidf_vectorizer = TfidfVectorizer()  

# Fit and transform the vectorizer on the combined features 

tfidf_matrix = tfidf_vectorizer.fit_transform(df['combined_features']) 

   𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
      (6) 

5. Cosine Similarity: 

Cosine similarity is a measure of similarity between two non-zero vectors in an 

inner product space. In the context of your movie recommendation system, it's used 

to determine how similar two movies are based on their content represented as 

vectors. Cosine similarity is particularly useful for text-based data and is a common 

technique for measuring text similarity. 

Importing the Necessary Library: 

from sklearn.metrics.pairwise import cosine_similarity 

In this code, you import the cosine_similarity function from scikit-learn's 

metrics.pairwise module. This function allows you to compute cosine similarity 

between vectors efficiently. 

cos 𝜃 = 𝑎
→.

𝑏
→

||
𝑎
→||||

𝑏
→||

 = 
∑ 𝑛1 𝑎𝑖𝑏𝑖

√∑ 𝑛1 𝑎𝑖
2 √∑ 𝑛1 𝑏𝑖

2         (7) 

Where, 
𝑎
→.

𝑏
→ = ∑ 𝑛1 𝑎𝑖𝑏𝑖  = 𝑎𝑖𝑏𝑖  + 𝑎2𝑏2  + … + 𝑎𝑛𝑏𝑛 is the dot product of the 

vectors. 

 

Calculating Cosine Similarity: 

similarity = cosine_similarity(vectors) 

Here's what this code snippet does: 

vectors is a matrix where each row represents a movie, and each column represents 

a term (word or token) from the 'tags' column. Each element in the matrix 

corresponds to the frequency or presence of a term in a movie's 'tags.' 
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cosine_similarity(vectors) takes this matrix as input and computes the pairwise 

cosine similarity between all rows (movies) in the matrix. The result is a similarity 

matrix where similarity[i][j] represents the cosine similarity between movie 'i' and 

movie 'j.' 

Interpreting the Cosine Similarity Matrix: 

 

 

Figure 16 Cosine Similarity 

The similarity matrix is a square matrix where each row and column correspond to 

a movie in your dataset. 

Cosine similarity values range between -1 and 1. 

1 indicates that two movies are perfectly similar in content. 

0 indicates no similarity (orthogonal vectors). 

-1 indicates perfect dissimilarity (opposite directions). 

The diagonal elements (where i = j) in the matrix will have a cosine similarity of 1 

since a movie is perfectly similar to itself. 

How to Use Cosine Similarity for Recommendations? 

To make movie recommendations, you typically follow these steps: 

Given a movie as input, find its index in the similarity matrix. 

Retrieve the row corresponding to the input movie, which contains similarity scores 

for all other movies. 

Sort the similarity scores in descending order to identify the most similar movies. 

Recommend the top N movies with the highest similarity scores. 
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Your code may include a recommendation function that performs these steps, 

allowing users to input a movie title and receive a list of recommended movies 

based on their similarity to the input movie. 

 

In summary, cosine similarity is a mathematical measure that quantifies how similar 

two movies are based on their content features. It's a fundamental concept in 

content-based recommendation systems, helping to identify movies that share 

similar content characteristics with a given movie. 

6. Recommendation Function: 

Finally, you define a 'recommend' function to recommend movies based on a given 

movie's title. This function takes a movie title as input, finds the index of that movie 

in the dataset, calculates the cosine similarity with other movies, and returns a list 

of recommended movies based on the highest similarity scores. 
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3.6 System Design 

 

3.6.1 Refinement of class diagram, object, state, sequence and activity 

3.6.1.1 Refinement of class diagram 

 

 

Figure 17 Refinement of class diagram 
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3.6.1.2 Refinement of object diagram 

 

Figure 18 Refinement of object diagram 
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3.6.1.3 Refinement of state diagram 

 

Figure 19 Refinement of state diagram 
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3.6.1.4 Refinement of sequence diagram 

 

Figure 20 Refinement of sequence diagram 
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3.6.1.5 Refinement of activity diagram 

 

Figure 21 Refinement of User activity diagram 
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Figure 22 Refinement of Content Supervisor activity diagram 
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Figure 23 Refinement of Content Manager activity diagram 
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3.6.2 Component Diagram 

 

Figure 24 Component Diagram of Movie Recommendation System 

 

A component diagram is a type of UML diagram that shows the structural relationships and 

dependencies between the components of a software system. It illustrates how software 

components are connected and interact with each other within a system. Components can 

represent individual modules, libraries, executables, or other parts of a system. 
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3.6.3 Deployment Diagram 

 

Figure 25 Deployment Diagram of  Movie Recommendation System 

 

Deployment diagram are UML structural diagrams that shows the relationships between 

the hardware and software components in the system and the physical distribution of the 

processing i.e., Deployment diagram are used to visualize the topology of the physical 

components of the system where software components are deployed. 
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Chapter 4: Implementation and Testing 

 

4.1 Implementation 

 

4.1.1 Tools used (CASE tools, programming languages, database platforms) 

 

Table 1 Tools and its purposes 

Tools and Programming languages Purposes 

React js. For Frontend development 

Python, Nest js. For Backend development 

Mysql Database Management 

Visual Studio code For coding and development 

Git and GitHub For version controlling 

 

Along with it other tools and libraries used for implementing machine learning algorithm 

are as follows: 

 Python libraries: For the computation and analysis we need certain python libraries 

which are used to perform analytics. Packages such as SKlearn, Numpy, pandas, 

Matplotlib, Flask framework, etc are needed. 

 SKlearn: It features various classification, regression and clustering algorithms 

including support vector machines, random forests, gradient boosting, k-means and 

DBSCAN, and is designed to interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 

  NumPy: NumPy is a general-purpose array-processing package. It provides a 

highperformance multidimensional array object, and tools for working with these 

arrays. It is the fundamental package for scientific computing with Python.  

 Pandas: Pandas is one of the most widely used python libraries in data science. It 

provides high-performance, easy to use structures and data analysis tools. Unlike 

NumPy library which provides objects for multi-dimensional arrays, Pandas 

provides in-memory 2d table object called Data frame. 
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 Flask: It is a lightweight WSGI web application framework. It is designed to make 

getting started quick and easy, with the ability to scale up to complex applications. 

It began as a simple wrapper around Werkzeug. 

 

4.1.2 Implementation details of modules 

 

This section elaborates on how the modules in the system are implemented and what 

functions do they contribute to the system.  

1. User Authentication: 

a Sign Up: Users can create a new account by providing their username, email, 

password, and security question answer. Upon clicking the "Create" button, 

their account is registered. 

b Login: Registered users can log in by entering their username and password. 

If the provided credentials match the database, the user is authenticated and 

directed to the dashboard. 

2. Movie Search and Recommendations: 

a Search Movies: After logging in, users can search for movies using various 

criteria such as movie name, genres, or cast members' names. 

b Movie Recommendations: Based on user search, collaborative filtering and 

cosine similarity algorithms provide personalized movie recommendations to 

the users. 

3. User Dashboard: 

a Dashboard: Upon logging in, users are directed to their personalized 

dashboard, where they can view their account information, movie search, and 

recommended movies, movie filtered from genre 

4. Content Management: 

a. Content Supervisor Login: Content supervisors can log in with their 

credentials to access administrative functionalities, including the addition of 

content managers and reviewing movie additions. 

b. Content Manager Login: Content managers can log in to contribute movie 

content and manage their activities within the system. 

c. Add Content Manager: Content supervisors have the authority to add content 

managers to the system, granting them the ability to contribute movie content. 
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d. Review Movie Addition: Content managers can add movies to the system. The 

added movies undergo a review process by content supervisors, who have the 

authority to approve or reject the additions. 

5. Log Out: 

a Logout Option: Users can log out of the system to end their session and 

protect their account privacy. 

6. Data Management: 

a Database Management: User account information are stored in a MySQL 

database for efficient data retrieval and management. 

7. User Interaction: 

a Intuitive Interface: The system provides a user-friendly interface, enabling 

seamless interactions between users and the movie recommendation features. 

8. Continuous Improvement: 

a Algorithm Enhancement: To enhance movie recommendations and review 

analysis, the system is continuously updated with new movie data and user 

feedback. Regular updates ensure the system remains relevant and accurate in 

its suggestions. 

 

4.2 Testing 

 

4.2.1 Test cases for Unit Testing 

Unit testing is the first level of testing and is often performed by the developers themselves. 

It is the process of ensuring individual components of a piece of software at the code level 

are functional and work as they were designed. It validates real-world scenarios, identifies 

issues, and ensures user satisfaction before deployment. It is the process of taking a module 

and running it in isolation from rest of the software product by using prepared test cases 

and comparing the actual result with the result redirected with the specifications and design 

of the module. 
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Table 2 Sign up 

Serial No. Description Expected 

Result 

Actual 

Result 

Result 

1. Sign up User information 

should be saved. 

User information is 

saved in the database. 

Passed 

2. Empty 

fields 

Dialogue box 

should be shown 

saying, “Please fill 

the form” 

Dialogue box is 

shown saying, 

“Please fill the form” 

Passed 

 

Table 3 Login 

Serial 

No. 

Description Expected 

Result 

Actual 

Result 

Result 

1. Login User should be 

redirected to dashboard 

after authentication. 

User is redirected to 

dashboard after 

authentication. 

Passed 

2. Empty 

fields 

Dialogue box should be 

shown saying, “Please 

fill the form” 

Dialogue box is 

shown saying, “Please 

fill the form” 

Passed 

3. Incorrect 

username 

password 

Snackbar should be 

shown saying, 

“Incorrect credentials” 

Snackbar is shown 

saying, “Incorrect 

credentials” 

Passed 
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Table 4 Movie Search 

 

Table 5 Movie Recommendations 

Serial 

No. 

Description Expected 

Result 

Actual 

Result 

Result 

1. Test the accuracy 

of personalized 

movie 

recommendations 

using cosine 

similarity 

algorithms. 

Relevant and 

personalized movie 

recommendations are 

provided to the user. 

User search are 

considered for 

recommendation. 

Passed 

 

  

Serial 

No. 

Description Expected 

Result 

Actual 

Result 

Result 

1. Test the 

functionality 

of movie 

search based 

on movie 

name, 

genres, or 

cast 

members' 

names. 

Relevant movie search 

results are displayed. 

User enters valid 

movie name. 

Passed 
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Table 6 Genre wise filtering 

Serial 

No. 

Description Expected 

Result 

Actual 

Result 

Result 

1. Genre wise 

filtering. 

The user can filter the 

data by clicking on the 

genre and the selected 

genres movies will be 

displayed. 

The user can filter the 

data by clicking on the 

genre and the selected 

genres movies will be 

displayed. 

Passed 

 

Table 7 Logout 

Serial 

No. 

Description Expected 

Result 

Actual 

Result 

Result 

1. Logout Dashboard should close 

and login page should 

open. 

Dashboard will close 

and login page will 

open. 

Passed 
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4.2.2 Test cases for System Testing 

System Testing is a level of testing that validates the complete and fully integrated software 

product. The purpose of a system test is to evaluate the end-to-end system specification. 

The system is integrated, then tested, once each module has been designed, tested, and 

passed all of the tests. 

Table 8 System testing 

Serial 

No. 

Description Expected 

Result 

Actual 

Result 

Result 

1. Overall 

system 

testing 

All the functionalities of 

the system should work 

properly after 

integration. 

All the functionalities 

of the system are 

working properly after 

integration. 

Passed 

 

4.3 Result Analysis 

 

The system was tested through unit testing and proved to be effective in executing its 

intended functions. The results showed that the project was able to meet its goals, but there 

is still room for improvement in terms of expanding the system's capabilities and increasing 

community involvement. 

 

4.3.1 Evaluating Accuracy  

In machine learning, accuracy is a common metric used to evaluate the performance of a 

classifier model. Accuracy measures the proportion of correctly classified instances among 

all instances in the dataset. To calculate accuracy, the first step is to divide the dataset into 

two parts: a training set and a test set. The training set is used to train the model, while the 

test set is used to evaluate the model's performance. In classifier model the most common 

measure to evaluate accuracy are: 

 Precision: Precision is the fraction of true positives among all the positive 

predictions made by the model. It measures how accurate the model is when 

predicting positive instances. The formula for precision is:  

Precision = True Positives / (True Positives + False Positives).    (8) 
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 Recall: Recall is the fraction of true positives among all the actual positive instances 

in the dataset. It measures how well the model is able to identify positive instances. 

The formula for recall is:  

Recall = True Positives / (True Positives + False Negatives).  (9) 

 F1 score: The F1 score is the harmonic mean of precision and recall. It provides a 

single score that balances the tradeoff between precision and recall. The F1 score 

ranges from 0 to 1, where a score of 1 represents perfect precision and recall, and 0 

represents the worst performance. The formula for F1 score is: 

 F1 score = 2 * (Precision * Recall) / (Precision + Recall)                             (10) 

 

Figure 26 Accuracy of the recommendation system 

 

Figure 27 Confusion Matrix 
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Chapter 5: Conclusion and Future Recommendation 

 

5.1 Conclusion 

 

The movie recommendation system embodies a comprehensive and user-centric approach 

to enhance the cinematic experience for users. The system seamlessly integrates user 

authentication, advanced search and recommendation algorithms, and intuitive interfaces, 

ensuring a personalized and engaging journey for movie enthusiasts. The incorporation of 

content supervisors and managers adds a layer of content curation and review, ensuring the 

quality and relevance of the movie database. Robust data management through MySQL 

facilitates efficient storage and retrieval of user details, movie information, and reviews. 

The continuous improvement aspect, marked by algorithm enhancements and regular 

updates, reflects the commitment to staying current and relevant in the dynamic landscape 

of film content. The system not only empowers users to discover and enjoy movies tailored 

to their preferences but also provides content managers and supervisors with the tools to 

contribute and curate a diverse and high-quality collection. 

In essence, this movie recommendation system is designed not just as a platform for 

discovering movies but as a dynamic ecosystem that fosters user engagement, content 

curation, and ongoing improvement. With its user-friendly interface, comprehensive 

features, and commitment to staying at the forefront of recommendation technology, the 

system stands as a testament to the evolving landscape of personalized entertainment 

solutions. 

 

5.2 Future Recommendations 

 

1. Sentiment analysis for review and comments. 

2. Reward based coupon systems. 

3. Integration with external platforms and streaming services for enriched data. 

4. Add movie watchable platforms 

5. Extend language support for a global audience 

6. Add other regional languages movies. 

7. Create a user-friendly mobile app for on-the-go movie discovery. 
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Appendices: 

 

Screenshots of UI: 

i. Login Page 

 

ii. Sign Up Page 

 

  



 

iii. Forgot Password 

 

iv. Reset Password 

 

  



 

v. Home Page 

 

vi. Movies Page for Admin 

 

vii. Add Movie Page 



 

 

viii. Add Admin Page 

 



 

 Source code: 

Login 

const LoginForm = () => { 

 const navigate = useNavigate(); 

 const [email, setEmail] = useState(""); 

 const [password, setPassword] = useState(""); 

 const [error, setError] = useState(""); 

 const [showPassword, setShowPassword] = useState(false); 

 const [openSnackbar, setOpenSnackbar] = useState(false); 

 const handleSnackbarClose = (event, reason) => { 

   if (reason === "clickaway") { 

     return; 

   } 

   setOpenSnackbar(false); 

 }; 

 const handleSnackbarOpen = () => { 

   setOpenSnackbar(true); 

 }; 

 const handleSubmit = async (e) => { 

   e.preventDefault(); 

   try { 

     const response = await axios.post("http://localhost:8005/auth/login", { 

       email, 

       password, 

     }); 

     const { token } = response.data; 

     localStorage.setItem("token", token); 

     handleSnackbarOpen(); 

     setTimeout(() => { 

       navigate("/home"); 

     }, 500); 

   } catch (error) { 

     setError("Invalid Credentials. Please try again."); 

   } 

 }; 

 

 

 

 

Signup 

 

 

function ResetPassword() { 

 const { token } = useParams(); 

 const navigate = useNavigate(); 

 

 const [formData, setFormData] = useState({ 

   password: "", 

   confirmPassword: "", 

 }); 

 const [error, setError] = useState(""); 

 const [passwordsMatch, setPasswordsMatch] = useState(true); 



 

 const [showPassword, setShowPassword] = useState(false); 

 const [showConfirmPassword, setShowConfirmPassword] = useState(false); 

 

 const handleChange = (e) => { 

   const { name, value } = e.target; 

   setFormData((prevData) => ({ 

     ...prevData, 

     [name]: value, 

   })); 

   if (name === "confirmPassword" && value !== "") { 

        setPasswordsMatch(value === formData.password); 

   } 

 }; 

 const handleShowPassword = () => { 

   setShowPassword(!showPassword); 

 }; 

 const handleShowConfirmPassword = () => { 

   setShowConfirmPassword(!showConfirmPassword); 

 }; 

 const handleSubmit = async (e) => { 

   e.preventDefault(); 

   setError(""); // Clear previous error message 

 

   try { 

     if (!passwordsMatch) { 

       throw new Error("Passwords do not match"); 

     } 

     // Make an API request to reset the password 

     await axios.post(`http://localhost:8005/auth/reset-password/${token}`, { 

       password: formData.password, 

     }); 

 

     // Display a success message or redirect to a login page 

     alert("Password reset successfully"); 

     navigate("/login"); 

   } catch (error) { 

     console.error("Reset Password failed:", error); 

     setError(error.message || "Failed to reset password. Please try again."); 

   } 

 }; 

 

 

 

 

Movie 

 

 

const MoviePage = () => { 

 const navigate = useNavigate(); 



 

 const [searchText, setSearchText] = useState(""); 

 const [userData, setUserData] = useState(""); 

 const [movies, setMovies] = useState([]); 

 const [searchResults, setSearchResults] = useState([]); 

 const [recommendedMovies, setRecommendedMovies] = useState([]); 

 useEffect(() => { 

   getUserData(); 

   getAllMovies(); 

 }, []); 

 const getUserData = () => { 

   const storedToken = localStorage.getItem("token"); 

   if (storedToken) { 

     const decodedToken = jwtDecode(storedToken); 

     setUserData(decodedToken); 

   } 

 } 

 const getAllMovies = () => { 

   axios 

     .get("http://localhost:8005/movies") 

     .then((response) => { 

       setMovies(response.data); 

     }) 

     .catch((error) => { 

       console.error("Error fetching data: ", error); 

     }); 

 }; 

 const handleAddAdmin = () => { 

   navigate("/admin"); 

 }; 

 const handleInlineSearch = (searchText) => { 

   setSearchText(searchText); 

   // Filter the movie list based on the search text 

   const results = movies.filter( 

     (movie) => 

       movie.title.toLowerCase().includes(searchText.toLowerCase()) || 

       movie.genre.toLowerCase().includes(searchText.toLowerCase()) 

   ); 

   setSearchResults(results); 

   if (results.length > 0) { 

     // Extract the genre of the first movie in the search results 

     const genre = results[0].genre; 

     // Filter recommended movies with the same genre, excluding the first movie 

     const recommendations = movies.filter( 

       (movie) => movie.genre === genre && movie.id !== results[0].id 

     ); 

     setRecommendedMovies(recommendations.slice(0, 5)); // Ensure at least 5 recommended movies 

   } else { 

     setRecommendedMovies([]); 

   } 

 }; 

 

 

Home 

const Home = () => { 
 const [homeGenreList, setHomeGenreList] = useState([]); 



 

 const [selectedGenres, setSelectedGenres] = useState([]); 

 const [currMovies, setCurrMovies] = useState([]); 

 const [recommendedMovies, setRecommendedMovies] = useState([]); 

 const [sortOrder, setSortOrder] = useState("aesc"); 

 const [movies, setMovies] = useState([]); 

 const moviesSectionRef = useRef(null); 

 const navigate = useNavigate(); 

 useEffect(() => { 

   // Fetch movies and genres from your NestJS API 

   axios 

     .get("/movies") 

     .then((response) => { 

       setMovies(response.data); 

       // Extract unique genres from the movies 

       const uniqueGenres = [ 

         ...new Set(response.data.map((movie) => movie.genre)), 

       ]; 

       setHomeGenreList(uniqueGenres); 

     }) 

     .catch((error) => { 

       console.error("Error fetching data: ", error); 

     }); 

 }, []); 

 useEffect(() => { 

   if (selectedGenres.length > 0) { 

     // Fetch movies based on selected genres from your NestJS API 

    axios.get(`/movies/filterByGenres?genres=${selectedGenres.join(",")}`) 

       .then((response) => { 

         let sortedMovies = response.data; 

         if (sortOrder === "desc") { 

           sortedMovies = sortedMovies.sort( 

             (a, b) => b.vote_average - a.vote_average 

           ); 

         } else { 

           sortedMovies = sortedMovies.sort( 

             (a, b) => a.vote_average - b.vote_average 

           ); 

         } 

         setCurrMovies(sortedMovies); 

       }) 

       .catch((error) => { 

         console.error("Error fetching filtered movies: ", error); 

       }); 

   } else { 

     // If no genres are selected, show all movies 

     setCurrMovies([...movies]); 

   } 

 }, [selectedGenres, sortOrder, movies]); 

 const onTagClick = (genreId) => { 

   let isPresent = selectedGenres.includes(genreId); 

   if (isPresent) { 

     setSelectedGenres(selectedGenres.filter((item) => item !== genreId)); 

   } else { 

     setSelectedGenres([...selectedGenres, genreId]); 

   } 

   window.scrollTo({ 



 

     top: moviesSectionRef.current.offsetTop, 

     behavior: "smooth", 

   }); 

 }; 

 const handleClick = (id) => { 

   navigate(`/movie/${id}`); 

 }; 

 const renderMovies = () => 

   currMovies.map((movie) => ( 

     <div key={movie.id} onClick={() => handleClick(movie.id)}> 

       <MovieCard movie={movie} /> 

     </div> 

   )); 

 

Add Movies 

const AddMovie = () => { 

 const [movieData, setMovieData] = useState({ 

   title: "", 

   year: null, 

   contentRating: "", 

   runtime: "", 

   description: "", 

   rating: null, 

   poster: "", 

   genre: "", 

   director: "", 

   metascore: null, 

   writer: "", 

   stars: "", 

   trailer: "", 

 }); 

 const navigate = useNavigate(); 

 

 const handleChange = (e) => { 

   const { name, value } = e.target; 

   let parsedValue = value; 

   if (name === "year" || name === "rating" || name === "metascore") { 

     // Use parseFloat for rating and metascore, and parseInt for year 

     parsedValue = name === "year" ? parseInt(value) : parseFloat(value); 

   } 

   // Uncomment the following line to update the state 

   setMovieData({ ...movieData, [name]: parsedValue }); 

 }; 

 const handleSubmit = async (e) => { 

   e.preventDefault(); 

   try { 

     const response = await axios.post( 

       `http://localhost:8005/movies/create`, 

       movieData 

     ); 

     navigate("/movie"); 

     if (response.status === 200) { 

       console.log("Movie data sent successfully!"); 

     } else { 

       console.error("Request failed with status:", response.status); 



 

     } 

   } catch (error) { 

     console.error("An error occurred:", error); 

   } 

 }; 

 

  



 

Backend 

@Controller('movies') 

export class MoviesController { 

 constructor( 

   private readonly moviesService: MoviesService, 

   private readonly recommendationService: RecommendationService, 

 ) {} 

 @Post('create') 

 create(@Body() createMovieDto: CreateMovieDto) { 

   return this.moviesService.create(createMovieDto); 

 } 

 @Get() 

 findAll() { 

   return this.moviesService.findAll(); 

 } 

 @Get('superAdmin') 

 findAllBySuperAdmin() { 

   return this.moviesService.findAllBySuperAdmin(); 

 } 

 @Get('filterByGenres') 

 filterByGenres(@Query('genres') genres: string) { 

   const selectedGenres = genres.split(','); 

   return this.moviesService.filterByGenres(selectedGenres); 

 } 

 @Post(':id/comments') 

 createComment(@Param('id') movieId: string, @Body() data: { comment: string; userId: Auth; 

userRating?: number }) { 

   return this.moviesService.createComment(+movieId, data); 

 } 

  @Get(':id/comments') 

 getComments(@Param('id') movieId: string){ 

   return this.moviesService.getComments(+movieId); 

 } 

 @Get(':id') 

 findOne(@Param('id') id: string) { 

   return this.moviesService.findOne(+id); 

 } 

 @Patch(':id') 

 update(@Param('id') id: string, @Body() updateMovieDto: UpdateMovieDto) { 

   return this.moviesService.update(+id, updateMovieDto); 

 } 

 @Delete(':id') 

 remove(@Param('id') id: string) { 

   return this.moviesService.remove(+id); 

 } 

} 



 

 


