

Tribhuvan University

Faculty of Humanities and Social Sciences

A PROJECT REPORT

On

MOVIE RECOMMENDATION SYSTEM

Submitted to

Department of Computer Application National College

In partial fulfilment of the requirements for the Bachelors in Computer Application

Submitted by

Suyashaa Vaidya

T.U. Reg: 6-2-366-35-2018

4th Poush, 2080

Under the Supervision of

Er. Nirajan Panthee

i

Tribhuvan University

Faculty of Humanities and Social Sciences

National College

Supervisor’s Recommendation

I hereby recommend that this project prepared under my supervision by SUYASHAA

VAIDYA entitled “MOVIE RECOMMENDATION SYSTEM” in partial fulfilment of

the requirements for the degree of Bachelor of Computer Application is recommended for

the final evaluation.

SIGNATURE

Er. Nirajan Panthee

SUPERVISOR

Lecturer

Computer Science

National College, Lainchaur

ii

Tribhuvan University

Faculty of Humanities and Social Sciences

National College

Letter of Approval

This is to certify that this project prepared by Miss SUYASHAA VAIDYA entitled

“MOVIE RECOMMENDATION SYSTEM” in partial fulfilment of the requirements for

the degree of Bachelor in Computer Application has been evaluated. In our opinion it is

satisfactory in the scope and quality as a project for the required degree.

SIGNATURE of Supervisor

Er. Nirajan Panthee

Computer Science

National College ,Lainchaur

SIGNATURE of HOD/Coordinator

Mr. Navaraj Heka

Computer Science

National College, Lainchaur

SIGNATURE of Internal Examiner

Internal Examiner

SIGNATURE of External Examiner

External Examiner

iii

Acknowledgement

I am sincerely grateful to National College for their steadfast support and for providing a

platform for our project. I extend my heartfelt thanks to our respected Academic Director,

Sir Navaraj Heka, for his unwavering support and effective management throughout the

project. My gratitude also goes to our dedicated teachers/supervisors, Mr. Prakash Kafle

and Er. Nirajan Panthee, for their consistent support, which was instrumental in the success

of our project.

I would like to express my appreciation to all the experts who generously shared their

knowledge and contributed to the project. A special acknowledgment goes to the teachers

at National College for creating a conducive learning environment, allowing us to explore

various IT equipment and tools, understand their working principles, and gain insights into

design and control systems related to our subject.

I want to convey my thanks to the staff in all departments, the Administration, and site

organization for their continuous assistance. Special appreciation is due to the working staff

involved in these subjects for providing guidance that facilitated the completion of our

project.

In addition, I extend my heartfelt thanks to my parents and friends who played a crucial

role in helping me finalize the project within the limited time frame. Their encouragement

and assistance were invaluable throughout the process.

iv

Abstract

The Movie Recommendation System implemented in this project makes use of the latest

technologies and machine learning algorithms to provide a culturally diverse and engaging

movie-watching experience. Three user modules content manager, content supervisor, and

movie enthusiast are supported by the system, which was built using Python for machine

learning components, Nest.js for endpoints, and React.js for the frontend. The pivotal

functionality revolves around content-based filtering utilizing cosine similarity, thereby

augmenting the precision of movie suggestions. The user interface allows for diverse

interactions such as movie searches, detailed exploration, trailer viewing, commenting, and

rating. In the machine learning domain, web scraping is used to gather data in order to create

an extensive database of movie information. Preprocessing includes cleansing,

normalization, and addressing missing values for the data that has been gathered. To extract

pertinent data from the dataset, feature extraction is used. After that, textual data is

processed via tokenization, which makes it easier to extract useful features. By computing

their similarity scores, movies' degrees of resemblance are determined using cosine

similarity. By recognizing films with similar qualities, this similarity metric helps to

improve recommendation accuracy. The frontend easily incorporates the computed

similarity ratings, enhancing the user experience by offering tailored and contextually

appropriate movie recommendations. Evaluation metrics are used to evaluate the

effectiveness of the recommendation system, including recall, precision, and F1 score. With

its selection of Hindi, English, and Nepali films, the Movie Recommendation System not

only satisfies modern user expectations but also highlights cultural diversity. By adding

this, the underrepresentation of regional material in recommendation systems is lessened

and the variety of recommended films is increased. To sum up, this movie recommendation

system combines state-of-the-art technology, machine learning algorithms, and a

multicultural perspective to provide a dynamic and tailored cinematic experience. By

incorporating sophisticated assessment indicators, the system's performance is thoroughly

evaluated, ensuring that consumers receive personalized and superior movie

recommendations.

Keywords: Similarity, Recommendation, Analysis, Movies, IMDB, Octoparse, Kaggle

v

Table of Contents

Supervisor’s Recommendation ... i

Letter of Approval .. ii

Acknowledgement .. iii

Abstract ... iv

Table of Contents ... v

List of Abbreviation ... vii

List of Figures ... viii

List of Tables .. ix

Chapter 1: Introduction .. 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Objectives ... 2

1.4 Scope and Limitations .. 2

1.4.1 Scope ... 2

1.4.2 Limitations .. 2

1.5 Development Methodology .. 3

1.6 Report Organization ... 4

Chapter 2: Background Study and Literature Review ... 5

2.1 Background Study .. 5

2.2 Literature Review ... 6

Chapter 3: System Analysis and Design .. 8

3.1 System Analysis ... 8

3.1.1 Requirement Analysis ... 8

3.1.2 Feasibility Analysis (Technical, operational, economic) 11

3.1.3 Data Modelling (ER-Diagram) ... 12

vi

3.1.4 Object Modelling using Class and Object Diagrams .. 13

3.2 Dynamic Modelling using State and Sequence Diagrams 16

3.2.1 State Diagram .. 16

3.2.2 Sequence Diagram .. 18

3.2.3 Interface design (UI/UX) .. 19

3.2.4 Process Modelling using Activity Diagrams .. 23

3.3 Proposed Model ... 25

3.4 Algorithm ... 25

3.5 Machine Learning .. 28

3.6 System Design .. 33

3.6.1 Refinement of class diagram, object, state, sequence and activity 33

3.6.2 Component Diagram ... 40

3.6.3 Deployment Diagram .. 41

Chapter 4: Implementation and Testing ... 42

4.1 Implementation .. 42

4.1.1 Tools used (CASE tools, programming languages, database platforms) 42

4.1.2 Implementation details of modules ... 43

4.2 Testing .. 44

4.2.1 Test cases for Unit Testing .. 44

4.2.2 Test cases for System Testing ... 48

4.3 Result Analysis .. 48

4.3.1 Evaluating Accuracy ... 48

Chapter 5: Conclusion and Future Recommendation .. 50

5.1 Conclusion ... 50

5.2 Future Recommendations .. 50

References .. 51

Appendices

vii

List of Abbreviations

API Application Programming Interface

AUTH Authentication

BCA Bachelors in Computer Application

CASE Computer Aided Software Engineering

CBF Content-Based Filtering

ER Entity Relationship

ID Identification

IDE Integrated Development Environment

IMDb Internet Movie Database

KNN K-Nearest Neighbors

SciPy Scientific Python

TF-IDF Term Frequency-Inverse Document Frequency

TMDB The Movie Database

TU Tribhuvan University

UI User Interface

UML Unified Modeling Language

UX User Experience

viii

List of Figures

Figure 1 Waterfall Model ... 3

Figure 2 Use Case Diagram of Movie recommendation system 10

Figure 3 ER Diagram of Movie Recommendation System ... 12

Figure 4 Class Diagram of Movie Recommendation System .. 13

Figure 5 Object Diagram Movie Recommendation System .. 14

Figure 6 State Diagram of Movie Recommendation System .. 16

Figure 7 Sequence Diagram of Movie Recommendation System 18

Figure 8 Home Page ... 19

Figure 9 Movies Page .. 20

Figure 10 Super Admin Movie page .. 21

Figure 11 Movies Details Page ... 22

Figure 12 User Activity Diagram ... 23

Figure 13 Content Manager Activity Diagram .. 24

Figure 14 Content Supervisor Activity Diagram ... 24

Figure 15 Proposed Model ... 25

Figure 16 Cosine Similarity ... 31

Figure 17 Refinement of class diagram ... 33

Figure 18 Refinement of object diagram ... 34

Figure 19 Refinement of state diagram .. 35

Figure 20 Refinement of sequence diagram .. 36

Figure 21 Refinement of User activity diagram ... 37

Figure 22 Refinement of Content Supervisor activity diagram ... 38

Figure 23 Refinement of Content Manager activity diagram .. 39

Figure 24 Component Diagram of Movie Recommendation System 40

Figure 25 Deployment Diagram of Movie Recommendation System 41

Figure 26 Accuracy of the recommendation system .. 49

Figure 27 Confusion Matrix ... 49

ix

List of Tables

Table 1 Tools and its purposes ... 42

Table 2 Sign up .. 45

Table 3 Login ... 45

Table 4 Movie Search .. 46

Table 5 Movie Recommendations ... 46

Table 6 Genre wise filtering ... 47

Table 7 Logout ... 47

Table 8 System testing ... 48

1

Chapter 1: Introduction

1.1 Introduction

The Movie Recommendation System is a user-focused platform created to help people find

and explore films that fit their preferences. Users can quickly search for films that interest

them and receive suggestions based on their searched movie. The system uses sophisticated

algorithms, such as the content-based filtering algorithm, to deliver seamless and enjoyable

movie discovery experiences. The data used in the system were collected from reputable

sources, including IMDb datasets through web scraping using Octoparse, ensuring a diverse

and comprehensive movie database for accurate recommendations. It contains movies in

three different languages: Nepali, Hindi, and English.

This system also includes a valuable review adding feature that allows users to review

movies by commenting and rating them. Additionally, the system is built with three

different user roles: Content Supervisor, Content Manager, and Movie Enthusiast, which

helps manage the system in different ways. The Content Manager can add movies, which

must be approved by the Content Supervisors, ensuring a meticulous curation process that

maintains the integrity, quality, and relevance of the movie database. This approval

mechanism guarantees that only content meeting predefined criteria and aligning with the

platform's standards is introduced, enhancing the overall user experience and upholding the

system's commitment to excellence. This empowers users to make well-informed decisions

about which movies to watch, ultimately enhancing their overall movie-watching

experience.

The system utilizes Python Flask for implementing the machine learning algorithm and the

recommendation API, while it also uses Nest.js for creating endpoints of the system as the

backend and React for the frontend, resulting in a seamless and user-friendly interface. User

and movie data are efficiently stored in a MySQL database, ensuring data integrity and

dependable system performance. With its user-centric approach, the Movie

Recommendation System aims to be an unbiased and indispensable companion for movie

enthusiasts seeking to discover the perfect films for their entertainment pleasure. With a

strong focus on user satisfaction and an ever-growing repository of movie data, the Movie

Recommendation System aspires to be the go-to platform for all movie enthusiasts seeking

an enriched and enjoyable cinematic experience.

2

1.2 Problem Statement

1. Limited user contributions and engagement in content addition.

2. Lack of meticulous curation in traditional movie recommendation systems.

3. Underrepresentation of Cross-Language Recommendations especially Nepali

movies.

1.3 Objectives

The objective is to create a user-focused platform for movie recommendations, integrating

content-based filtering using React js for frontend, Nest js for backend and python for

implementing the cosine similarity algorithm, and ensuring data security and continuous

improvement.

1.4 Scope and Limitations

1.4.1 Scope

1. Comprehensive Movie Recommendations: The system will aim to provide

personalized and relevant movie recommendations to users based on their

preferences and behavior.

2. User-Friendly Interface: The platform will offer a user-friendly interface with

intuitive navigation and search functionalities for an enhanced user experience.

3. Diverse Movie Database: The system will integrate a comprehensive movie

database from reputable sources, ensuring a wide range of movie options for users.

Continuous Improvement: The platform will be designed for continuous

improvement, incorporating user feedback and updates to enhance functionality and

features.

1.4.2 Limitations

1. Genre Dependency: This refers to a system's reliance on movie genres as a primary

factor for recommendations. Such systems may struggle when users have eclectic

tastes that span multiple genres.

3

2. Metadata Accuracy: It pertains to the precision and reliability of the data used for

recommendations. If the metadata describing movies is inaccurate or incomplete,

the system's ability to provide relevant suggestions is compromised.

3. Collaborative Limitation: This points to a constraint in collaborative filtering

methods, where recommendations are based on user behavior and preferences. It

may face challenges when dealing with new or niche items or when user interactions

are sparse, limiting the accuracy of suggestions

4. Algorithm Accuracy: The movie recommendation algorithm's accuracy may vary,

and some users may receive recommendations that do not align with their tastes.

5. Scalability: As the user base grows, the system's performance may face challenges

in handling increased traffic and generating real-time recommendations.

6. User Privacy Concerns: Despite efforts to ensure data security, there may still be

concerns about user privacy when collecting and storing user data.

1.5 Development Methodology

The movie recommendation app was created using the straightforward and sequential

Waterfall Software Development Life Cycle model.

Figure 1 Waterfall Model

4

1. Requirement Analysis: All the requirements for making a Movie

Recommendation System including time and resource needs, are listed. These

consist of an IDE for coding, a database for storing and retrieving data, and an OS

for running the program.

2. Design: The design of this Movie Recommendation System was done using Figma

which is an online tool to design high and low-fidelity images/ diagrams.

3. Development: The development phase consists of coding a function or a module.

In this, every class was made for the system, and their functions were added to the

next iterations

4. Testing: After development of each module it was tested and if any test failed it

was revised and the problem was found out and tested again until it is solved.

5. Deployment: The system was tested and reviewed and verified by the subject

teacher i.e., our supervisor every week in the development process.

1.6 Report Organization

This report consists of five chapters which will cover the designing and the development of

Movie Recommendation System.

Chapter One: This chapter includes the system and the problems, given an overview about

the study. It includes introduction, problem of statement, objectives, and solution of the

website.

Chapter Two: This chapter covers the literature review which is the previous related work

that has been done before. It also includes the description of the website where we have

taken the reference.

Chapter Three: This chapter explains the selected methodology that we are going in this

project. This chapter shows the design of the system. It includes ER- Diagram, State

Diagram, Sequence Diagram, Activity Diagram etc.

Chapter Four: This chapter discusses the implementation and testing. It includes the

overall description of the modules that we have implemented into our application. We have

shown the test cases.

Chapter Five: This chapter discusses the conclusion, recommendation and future works to

improve this study.

5

Chapter 2: Background Study and Literature Review

2.1 Background Study

The background study of the movie recommendation system with review analysis focuses

on evaluating and analyzing the strengths and weaknesses of current movie

recommendation systems. This study aims to explore their methods for user review analysis

and identify areas for enhancement. To conduct this research, we will gather and analyze

relevant literature, research papers, and articles related to movie recommendation systems

that incorporate user reviews and sentiment analysis. Additionally, we will assess the

performance and user satisfaction of existing systems like Netflix and Amazon Prime,

comparing them with platforms that utilize review analysis, such as IMDB, TMDB, and

Rotten Tomatoes. The findings from this study will serve as a foundation for improving the

proposed Movie Recommendation System and addressing any identified gaps and

opportunities for enhancement. Some of the key aspects that we will evaluate in existing

systems include:

1. User Review Analysis Techniques:

 What techniques are currently used to analyze user reviews and sentiments?

 How accurate and effective are these techniques in predicting user preferences and

providing personalized recommendations?

 What are the limitations of these techniques, and how can they be improved?

2. Recommendation Algorithms:

 What algorithms are currently used to generate movie recommendations?

 How do these algorithms incorporate user review analysis, and what impact does

this have on their performance?

 How can these algorithms be improved to provide more personalized and accurate

recommendations?

3. User Satisfaction and Engagement:

 How satisfied are users with existing movie recommendation systems?

 How do they perceive the impact of user review analysis on their movie-watching

experience?

 What factors influence user engagement and retention, and how can they be opti-

mized?

6

We can find the best practices and new techniques, as well as the gaps and chances for

improvement in movie recommendation systems using review analysis, by conducting a

complete analysis of the existing systems.

2.2 Literature Review

The literature on movie recommendation systems is vast and encompasses a wide array of

approaches and techniques to enhance user experiences and provide personalized

recommendations. One prominent direction that has emerged is the utilization of deep

learning-based recommender systems, which leverage their capacity to process vast

amounts of data and understand complex user-item interactions [1].

Collaborative filtering algorithms have also been extensively studied and compared to

determine their effectiveness in making recommendations [2]. These algorithms work by

identifying patterns and similarities between users or items to generate relevant

suggestions.

Online platforms like IMDb play a significant role in the realm of movie recommendation

systems. IMDb provides ratings, reviews, and essential information about movies and TV

shows, supporting users in their decision-making process [3].

As recommender systems continue to evolve, research on aspects like content-based

filtering, context-aware filtering, and sentiment analysis remains an active area. These areas

hold promise in further enhancing recommendation accuracy and personalization. [4]

Different algorithms for content based filtering were researched like cosine similarity, KNN

etc. [5]

Sentiment analysis has been proposed as a valuable tool to augment recommender systems

by considering user sentiment and feedback. By analyzing user reviews and ratings,

sentiment analysis can aid in making more accurate recommendations that align with users'

preferences and emotions [6].

Connected papers and academic resources contribute to the consolidation of research efforts

and facilitate deeper insights into the challenges and potential advancements in

recommender systems. Access to such resources enables researchers and practitioners to

stay up-to-date with the latest developments in the field [7].

7

To create movie recommendation systems, various resources are available, including

tutorials and guides that explore techniques like weighted hybrid approaches and creating

recommendation systems using nearest neighbors [8][9]. These tutorials offer practical

insights into building effective recommendation systems.

Cosine similarity and cosine distance have been widely used in measuring similarity

between items and users to produce accurate and relevant recommendations [10]. These

similarity metrics are fundamental in collaborative filtering and content-based filtering

approaches.

The integration of APIs, such as Flask for back-end development, React for front-end, and

MySQL for efficient data storage, enables the seamless functioning of movie

recommendation systems [11] Utilizing these technologies streamlines the development

process and allows for scalability and robustness in handling large datasets.

While significant strides have been made in movie recommendation systems, there remains

a need for further exploration and development of reliable evaluation metrics to assess the

performance and user satisfaction of recommender systems [12]. Robust evaluation metrics

are essential to gauge the effectiveness of different recommendation algorithms

accurately[13].

From deep learning-based approaches to collaborative filtering algorithms, sentiment

analysis, and diverse filtering techniques, researchers and developers continue to explore

ways to create robust and user-centric movie recommendation systems [15][16].

In conclusion, the literature review showcases a diverse landscape of techniques and

methodologies in the movie recommendation systems domain. The integration of APIs and

the availability of online platforms like IMDb play crucial roles in supporting these efforts.

Further research in context-aware filtering, explainability, cold-start problems, dataset

biases, and resource optimization is expected to shape the future of recommender systems.

8

Chapter 3: System Analysis and Design

3.1 System Analysis

3.1.1 Requirement Analysis

Requirement analysis is a crucial step in the development of any software system, including

Movie Recommendation System. The following are some of the key requirements for a

movie recommendation system:

1. Data collection: The system should have the capability to collect data from various

sources, including user reviews, ratings, and other relevant information.

2. Data preprocessing: The collected data needs to be cleaned, filtered, and trans-

formed into a format suitable for analysis. This involves removing irrelevant or du-

plicated data, converting the data into a standardized format, and performing other

necessary preprocessing steps.

3. Tokenization: The text data undergoes tokenization, a crucial step where the raw

text is broken down into smaller units called tokens, such as words or phrases. This

process facilitates the analysis of textual information by converting it into a more

manageable and structured form.

4. Feature Extraction: Extracting relevant features from the processed data is essential

for building effective models. Feature extraction involves selecting and transform-

ing the most significant characteristics of the data, enabling the model to focus on

key aspects during analysis and enhancing the overall performance of the system.

5. Machine learning algorithms: The system should employ machine learning algo-

rithms to learn from the user data and make better recommendations. These algo-

rithms can include collaborative filtering, content-based filtering, or hybrid ap-

proaches.

6. Evaluation metrics: The system should have appropriate evaluation metrics to as-

sess the quality of the recommendations. This can include metrics such as precision,

recall, and f1_score.

7. User interface: The system should have a user-friendly interface that allows users

to easily provide feedback, rate movies, and view personalized recommendations.

8. Scalability: The system should be scalable to handle large amounts of data and

growing user bases.

9

9. Security: The system should ensure the privacy and security of the user data, in-

cluding encryption, access control, and authentication mechanisms.

10

Figure 2 Use Case Diagram of Movie recommendation system

11

3.1.2 Feasibility Analysis (Technical, operational, economic)

In feasibility study, the Movie Recommendation System’s technical, operational, financial,

& legal factors are analyzed.

 i. Technical

The technical feasibility study aims to determine if the proposed movie

recommendation system with review analysis is technically possible within the

constraints of available technology and resources. The required software and hardware

components will be assessed in terms of their compatibility, availability, and cost-

effectiveness. The technical team will conduct tests to evaluate the performance,

scalability, and reliability of the system.

ii. Operational

The operational feasibility study aims to determine whether the proposed movie

recommendation system with review analysis can be integrated and implemented

within the existing organizational processes and practices. The operational team will

assess the impact of the proposed system on the current workflow, staff training needs,

and user acceptance. The team will also analyze the system's maintenance and support

requirements to ensure the system's sustainability.

iii. Economic

The economic feasibility study aims to determine the financial viability of the proposed

movie recommendation system with review analysis. The economic team will analyze

the system's development, implementation, and operational costs and compare them

with the potential benefits and returns. The team will also evaluate the system's long-

term profitability, potential risks, and impact on the organization's financial stability.

Based on the analysis, the team will determine if the proposed system is financially

feasible and justifiable.

12

3.1.3 Data Modelling (ER-Diagram)

Figure 3 ER Diagram of Movie Recommendation System

In the entity-relationship diagram (ERD) of the movie recommendation system, the USER

entity serves as the central hub, capturing user details such as names, email addresses, and

roles like superadmin, admin, or user. Each user is associated with multiple COMMENT

entities, reflecting their engagement with movies through reviews and ratings. The MOVIE

entity encapsulates comprehensive information about each film, including its title, release

year, runtime, description, genre, and director. Users and movies are linked through the

COMMENT entity, where users express their sentiments and provide ratings for specific

films. The system accommodates diverse roles, ensuring that superadmins have control

over movie approval status, marked by the SUPER_ADMIN_APPROVED attribute.

Additionally, the AUTH entity includes fields for password reset tokens and expiration

timestamps, enhancing user account security. This ERD enables seamless data flow,

facilitating user interactions, personalized movie recommendations, and content based

filtering based recommendations.

13

3.1.4 Object Modelling using Class and Object Diagrams

Figure 4 Class Diagram of Movie Recommendation System

The class diagram captures the essential entities and their relationships within the movie

recommendation system. The `User` class represents users with attributes such as user ID,

names, email, and authentication details. Users can engage with the system by commenting

(`Comment` class), expressing opinions and ratings for movies. The `Movie` class

encapsulates movie details, including title, genre, director, and status. Users are associated

with comments through a "makes" relationship, and movies are linked to comments through

a "hasComments" relationship, establishing the core interactions in the system. The

14

diagram highlights the connections between users, movies, and comments, providing a

foundational understanding of the movie recommendation system's architecture.

Figure 5 Object Diagram Movie Recommendation System

The object diagram provides a snapshot of instances within the movie recommendation

system, focusing on the `User`, `Movie`, and `Comment` classes. Users (`user1`, `user2`)

are associated with comments they make (`comment1`, `comment2`). Similarly, movies

(`movie1`, `movie2`) are linked to comments they receive. To represent the connection

between users, movies, and comments, an `Interaction` class is introduced, where instances

15

(`interaction1`, `interaction2`) encapsulate specific interactions, showcasing relationships

at a particular moment. This design allows for a dynamic representation of how users

interact with movies through comments in the context of the movie recommendation

system.

16

3.2 Dynamic Modelling using State and Sequence Diagrams

3.2.1 State Diagram

Figure 6 State Diagram of Movie Recommendation System

17

This state diagram captures the essential functionalities of a movie recommendation system

involving three key entities: Users, Content Managers, and Content Supervisors. Users can

seamlessly navigate through the system by logging in, searching for movies, receiving

recommendations, giving ratings, and adding comments, concluding with a logout. Content

Managers play a pivotal role in the system, initiating review requests for movies they wish

to add. They can subsequently review the status of their requests, either receiving approvals

or rejections from Content Supervisors. The Content Supervisor state revolves around

managing these review requests, allowing for the approval or rejection of movies submitted

by Content Managers. Additionally, the sign-up process is illustrated, providing a

comprehensive overview of the system's dynamics and user interactions.

.

18

3.2.2 Sequence Diagram

Figure 7 Sequence Diagram of Movie Recommendation System

This sequence diagram illustrates the interactions within a movie recommendation system.

Users log in, allowing Content Managers to request movie reviews. Content Supervisors

review these requests, and upon approval, Content Managers add the movie, notifying

Users. Simultaneously, Users interact with the Movie Database by searching for movies,

receiving recommendations, rating films, and adding comments. The diagram encapsulates

the core dynamics, showcasing the seamless flow between administrative processes and

user-driven functionalities in the system.

19

3.2.3 Interface design (UI/UX)

Figure 8 Home Page

20

Figure 9 Movies Page

21

Figure 10 Super Admin Movie page

22

Figure 11 Movies Details Page

23

3.2.4 Process Modelling using Activity Diagrams

Figure 12 User Activity Diagram

24

Figure 13 Content Manager Activity Diagram

Figure 14 Content Supervisor Activity Diagram

25

The activity diagrams depict the sequential activities within a movie recommendation

system involving Users, Content Managers, and Content Supervisors. In the User diagram,

a user logs in, browses movies, receives recommendations, rates films, adds comments, and

logs out. The Content Supervisor diagram illustrates the process of reviewing and managing

movie review requests, with the ability to approve or reject requests and add content

managers. The Content Manager diagram focuses on the manager's activities, including

requesting movie reviews, reviewing the status of requests, adding approved movies, and

revising requests if necessary. These diagrams offer a concise overview of the system's

functionalities, highlighting the dynamic interactions between users and administrators.

3.3 Proposed Model

Figure 15 Proposed Model

3.4 Algorithm

1. Content-Based Filtering: Content-Based Filtering (CBF) is a machine learning

approach used in recommendation systems to provide personalized recommendations

based on the inherent features and characteristics of items. In the context of movie

recommendations, CBF analyzes the content features of movies, such as genre and

description, to suggest items that are similar in content.

The CBF process can be outlined as follows:

26

a. Data Collection: Movie data, including features like title, genre, and description,

etc is collected from a data source, such as imdb by web scraping using a powerful

web scraping tool Octoparse and stored in a database. The data is preprocessed to

create a unified representation of movie content.

b. Feature Combination: Relevant features, like genre and description, are combined

into a single feature vector or text representation. For example, the 'content' feature

may be a combination of genre and description.

c. Vectorization: The combined content feature is transformed into a numerical

representation using techniques like TF-IDF (Term Frequency-Inverse Document

Frequency) vectorization. TF-IDF captures the importance of words within the

content and creates a numerical matrix.

Term Frequency (TF):

 𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
 (1)

Inverse Document Frequency (IDF):

 IDF(t, D) = 𝑙𝑜𝑔 (
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠 𝐷

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡
 (2)

TF-IDF:

 TF-IDF(t,d,D) = TF(t,d) x IDF(t,D) (3)

d. Similarity Calculation: The cosine similarity metric is applied to compute the

similarity between movies based on their TF-IDF vectors. The result is a similarity

matrix where each element represents the similarity between two movies.

cos 𝜃 = 𝑎
→.

𝑏
→

||
𝑎
→||||

𝑏
→||

 =
∑ 𝑛1 𝑎𝑖𝑏𝑖

√∑ 𝑛1 𝑎𝑖
2 √∑ 𝑛1 𝑏𝑖

2 (4)

where,
𝑎
→.

𝑏
→ = ∑ 𝑛1 𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏𝑖 + 𝑎2𝑏2 + … + 𝑎𝑛𝑏𝑛 is the dot product of the

vectors.

e. Recommendation Generation: Given an input movie title, the system identifies the

corresponding row in the similarity matrix. Movies are sorted based on their

similarity scores, and the top N movies (excluding the input movie) are

recommended.

27

The recommendation generation step involves sorting movies based on their similarity

scores and selecting the top N movies as recommendations. The similarity score between

movies is typically calculated using the cosine similarity metric. The cosine similarity

between two vectors A and B is computed using the formula:

 cos(𝜃) = 𝐴.𝐵

||𝐴||||𝐵||
 (5)

 A and B represent the TF-IDF vectors of two movies.

 A⋅B denotes the dot product of the two vectors.

 ∥A∥ and ∥B∥ represent the Euclidean norms of the vectors.

The cosine similarity ranges from -1 (completely dissimilar) to 1 (completely similar). The

higher the cosine similarity, the more similar the movies are in terms of their content.

After calculating the cosine similarity scores for a given input movie against all other

movies, the system identifies the corresponding row in the similarity matrix. Movies are

then sorted based on their similarity scores in descending order. The top N movies,

excluding the input movie itself, are recommended to the user.

Here's a high-level representation of the recommendation generation process:

 Calculate cosine similarity scores between the input movie and all other movies.

 Identify the row in the similarity matrix corresponding to the input movie.

 Sort movies based on their similarity scores in descending order.

 Exclude the input movie from the recommendations.

 Select the top N movies as the final recommendations.

 The value of N determines the number of recommendations to be provided to the

user. The higher the N, the more recommendations will be presented to the user.

In summary, Content-Based Filtering leverages the content features of items (movies) to

generate recommendations, making it suitable for scenarios where user-item interactions

are not explicitly available. It is particularly effective for suggesting items with similar

28

content characteristics, providing a form of personalized and context-aware

recommendations to users.

3.5 Machine Learning

1. Data Collection:

For the movie recommendation system, I have collected data from imdb datasets.

To extract the movie data, I used Octoparse to scrape the data. The data was cleaned

and the data labels are modified according to the requirements of the system.

Different language movies are incorporated.

S.N. Language No. of movies

1. Nepali 5000

2. Hindi 11000

3. English 15000

 Along with this the admin has the authority to add more movies.

2. Data Preprocessing:

a. Remove newline characters, brackets and extra space:

Removes leading and trailing whitespaces from the columns. It ensures that

there are no unnecessary spaces that might affect downstream processing.

Also, removes parentheses from the column using a regular expression. It is

useful if 'year' values are enclosed in brackets, ensuring that only the

numeric part remains.

Consider a DataFrame with the following sample data:

 genre description year

0 Action A thrilling movie. (1990)

1 Drama Emotional drama. (2005)

2 Romance Love story. (1982)

After applying the special character removal process, the DataFrame is

transformed as follows:

 genre description year

0 Action A thrilling movie. 1990

1 Drama Emotional drama. 2005

2 Romance Love story. 1982

29

b. Split the "movie_cast" column into "Director" and "Stars":

Splitting the column using the pipe ('|') as a delimiter and creates two new

columns, containing the separated values. It assumes that 'movie_cast' has

entries like "Director | Stars."

Consider a DataFrame with the following sample data:

 movie_cast

0 Director1 | Star1, Star2

1 Director2 | Star3, Star4

2 Director3 | Star5, Star6

After applying the splitting process, the DataFrame is transformed as

follows:

 movie_cast director stars

0 Director1 | Star1, Star2 Director1 Star1, Star2

1 Director2 | Star3, Star4 Director2 Star3, Star4

2 Director3 | Star5, Star6 Director3 Star5, Star6

3. Tokenization

Tokenization is the process of breaking down text into individual words or tokens.

This line combines the text from the 'title', 'genre', 'director', and 'stars' columns into

a new column called 'combined_features'. It uses the fillna('') method to handle

missing values, ensuring that the concatenation process doesn't break when there

are NaN values in any of the columns.

Consider a DataFrame with the following sample data:

 title genre director stars

0 Movie1 Action Director1 Star1, Star2

1 Movie2 Drama Director2 Star3, Star4

2 Movie3 Comedy Director3 Star5, Star6

After applying the tokenization process, the DataFrame is transformed as follows:

 title genre director stars combined_features

0 Movie1 Action Director1 Star1, Star2 Movie1 Action Director1 Star1, Star2

1 Movie2 Drama Director2 Star3, Star4 Movie2 Drama Director2 Star3, Star4

2 Movie3 Comedy Director3 Star5, Star6 Movie3 Comedy Director3 Star5, Star6

This 'combined_features' column contains the concatenated text from the specified

columns, creating a unified representation of relevant information for each movie.

30

4. Vectorization:

Vectorization is the process of converting text data into numerical vectors that can

be used as input for machine learning algorithms.This code uses the TF-IDF (Term

Frequency-Inverse Document Frequency) vectorizer from scikit-learn. It converts

the text in 'combined_features' into a sparse matrix of TF-IDF features. This matrix

represents the importance of each word (term) in the context of the entire dataset.

Create a TF-IDF Vectorizer

tfidf_vectorizer = TfidfVectorizer()

Fit and transform the vectorizer on the combined features

tfidf_matrix = tfidf_vectorizer.fit_transform(df['combined_features'])

 𝑇𝐹(𝑡, 𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
 (6)

5. Cosine Similarity:

Cosine similarity is a measure of similarity between two non-zero vectors in an

inner product space. In the context of your movie recommendation system, it's used

to determine how similar two movies are based on their content represented as

vectors. Cosine similarity is particularly useful for text-based data and is a common

technique for measuring text similarity.

Importing the Necessary Library:

from sklearn.metrics.pairwise import cosine_similarity

In this code, you import the cosine_similarity function from scikit-learn's

metrics.pairwise module. This function allows you to compute cosine similarity

between vectors efficiently.

cos 𝜃 = 𝑎
→.

𝑏
→

||
𝑎
→||||

𝑏
→||

 =
∑ 𝑛1 𝑎𝑖𝑏𝑖

√∑ 𝑛1 𝑎𝑖
2 √∑ 𝑛1 𝑏𝑖

2 (7)

Where,
𝑎
→.

𝑏
→ = ∑ 𝑛1 𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏𝑖 + 𝑎2𝑏2 + … + 𝑎𝑛𝑏𝑛 is the dot product of the

vectors.

Calculating Cosine Similarity:

similarity = cosine_similarity(vectors)

Here's what this code snippet does:

vectors is a matrix where each row represents a movie, and each column represents

a term (word or token) from the 'tags' column. Each element in the matrix

corresponds to the frequency or presence of a term in a movie's 'tags.'

31

cosine_similarity(vectors) takes this matrix as input and computes the pairwise

cosine similarity between all rows (movies) in the matrix. The result is a similarity

matrix where similarity[i][j] represents the cosine similarity between movie 'i' and

movie 'j.'

Interpreting the Cosine Similarity Matrix:

Figure 16 Cosine Similarity

The similarity matrix is a square matrix where each row and column correspond to

a movie in your dataset.

Cosine similarity values range between -1 and 1.

1 indicates that two movies are perfectly similar in content.

0 indicates no similarity (orthogonal vectors).

-1 indicates perfect dissimilarity (opposite directions).

The diagonal elements (where i = j) in the matrix will have a cosine similarity of 1

since a movie is perfectly similar to itself.

How to Use Cosine Similarity for Recommendations?

To make movie recommendations, you typically follow these steps:

Given a movie as input, find its index in the similarity matrix.

Retrieve the row corresponding to the input movie, which contains similarity scores

for all other movies.

Sort the similarity scores in descending order to identify the most similar movies.

Recommend the top N movies with the highest similarity scores.

32

Your code may include a recommendation function that performs these steps,

allowing users to input a movie title and receive a list of recommended movies

based on their similarity to the input movie.

In summary, cosine similarity is a mathematical measure that quantifies how similar

two movies are based on their content features. It's a fundamental concept in

content-based recommendation systems, helping to identify movies that share

similar content characteristics with a given movie.

6. Recommendation Function:

Finally, you define a 'recommend' function to recommend movies based on a given

movie's title. This function takes a movie title as input, finds the index of that movie

in the dataset, calculates the cosine similarity with other movies, and returns a list

of recommended movies based on the highest similarity scores.

33

3.6 System Design

3.6.1 Refinement of class diagram, object, state, sequence and activity

3.6.1.1 Refinement of class diagram

Figure 17 Refinement of class diagram

34

3.6.1.2 Refinement of object diagram

Figure 18 Refinement of object diagram

35

3.6.1.3 Refinement of state diagram

Figure 19 Refinement of state diagram

36

3.6.1.4 Refinement of sequence diagram

Figure 20 Refinement of sequence diagram

37

3.6.1.5 Refinement of activity diagram

Figure 21 Refinement of User activity diagram

38

Figure 22 Refinement of Content Supervisor activity diagram

39

Figure 23 Refinement of Content Manager activity diagram

40

3.6.2 Component Diagram

Figure 24 Component Diagram of Movie Recommendation System

A component diagram is a type of UML diagram that shows the structural relationships and

dependencies between the components of a software system. It illustrates how software

components are connected and interact with each other within a system. Components can

represent individual modules, libraries, executables, or other parts of a system.

41

3.6.3 Deployment Diagram

Figure 25 Deployment Diagram of Movie Recommendation System

Deployment diagram are UML structural diagrams that shows the relationships between

the hardware and software components in the system and the physical distribution of the

processing i.e., Deployment diagram are used to visualize the topology of the physical

components of the system where software components are deployed.

42

Chapter 4: Implementation and Testing

4.1 Implementation

4.1.1 Tools used (CASE tools, programming languages, database platforms)

Table 1 Tools and its purposes

Tools and Programming languages Purposes

React js. For Frontend development

Python, Nest js. For Backend development

Mysql Database Management

Visual Studio code For coding and development

Git and GitHub For version controlling

Along with it other tools and libraries used for implementing machine learning algorithm

are as follows:

 Python libraries: For the computation and analysis we need certain python libraries

which are used to perform analytics. Packages such as SKlearn, Numpy, pandas,

Matplotlib, Flask framework, etc are needed.

 SKlearn: It features various classification, regression and clustering algorithms

including support vector machines, random forests, gradient boosting, k-means and

DBSCAN, and is designed to interoperate with the Python numerical and scientific

libraries NumPy and SciPy.

 NumPy: NumPy is a general-purpose array-processing package. It provides a

highperformance multidimensional array object, and tools for working with these

arrays. It is the fundamental package for scientific computing with Python.

 Pandas: Pandas is one of the most widely used python libraries in data science. It

provides high-performance, easy to use structures and data analysis tools. Unlike

NumPy library which provides objects for multi-dimensional arrays, Pandas

provides in-memory 2d table object called Data frame.

43

 Flask: It is a lightweight WSGI web application framework. It is designed to make

getting started quick and easy, with the ability to scale up to complex applications.

It began as a simple wrapper around Werkzeug.

4.1.2 Implementation details of modules

This section elaborates on how the modules in the system are implemented and what

functions do they contribute to the system.

1. User Authentication:

a Sign Up: Users can create a new account by providing their username, email,

password, and security question answer. Upon clicking the "Create" button,

their account is registered.

b Login: Registered users can log in by entering their username and password.

If the provided credentials match the database, the user is authenticated and

directed to the dashboard.

2. Movie Search and Recommendations:

a Search Movies: After logging in, users can search for movies using various

criteria such as movie name, genres, or cast members' names.

b Movie Recommendations: Based on user search, collaborative filtering and

cosine similarity algorithms provide personalized movie recommendations to

the users.

3. User Dashboard:

a Dashboard: Upon logging in, users are directed to their personalized

dashboard, where they can view their account information, movie search, and

recommended movies, movie filtered from genre

4. Content Management:

a. Content Supervisor Login: Content supervisors can log in with their

credentials to access administrative functionalities, including the addition of

content managers and reviewing movie additions.

b. Content Manager Login: Content managers can log in to contribute movie

content and manage their activities within the system.

c. Add Content Manager: Content supervisors have the authority to add content

managers to the system, granting them the ability to contribute movie content.

44

d. Review Movie Addition: Content managers can add movies to the system. The

added movies undergo a review process by content supervisors, who have the

authority to approve or reject the additions.

5. Log Out:

a Logout Option: Users can log out of the system to end their session and

protect their account privacy.

6. Data Management:

a Database Management: User account information are stored in a MySQL

database for efficient data retrieval and management.

7. User Interaction:

a Intuitive Interface: The system provides a user-friendly interface, enabling

seamless interactions between users and the movie recommendation features.

8. Continuous Improvement:

a Algorithm Enhancement: To enhance movie recommendations and review

analysis, the system is continuously updated with new movie data and user

feedback. Regular updates ensure the system remains relevant and accurate in

its suggestions.

4.2 Testing

4.2.1 Test cases for Unit Testing

Unit testing is the first level of testing and is often performed by the developers themselves.

It is the process of ensuring individual components of a piece of software at the code level

are functional and work as they were designed. It validates real-world scenarios, identifies

issues, and ensures user satisfaction before deployment. It is the process of taking a module

and running it in isolation from rest of the software product by using prepared test cases

and comparing the actual result with the result redirected with the specifications and design

of the module.

45

Table 2 Sign up

Serial No. Description Expected

Result

Actual

Result

Result

1. Sign up User information

should be saved.

User information is

saved in the database.

Passed

2. Empty

fields

Dialogue box

should be shown

saying, “Please fill

the form”

Dialogue box is

shown saying,

“Please fill the form”

Passed

Table 3 Login

Serial

No.

Description Expected

Result

Actual

Result

Result

1. Login User should be

redirected to dashboard

after authentication.

User is redirected to

dashboard after

authentication.

Passed

2. Empty

fields

Dialogue box should be

shown saying, “Please

fill the form”

Dialogue box is

shown saying, “Please

fill the form”

Passed

3. Incorrect

username

password

Snackbar should be

shown saying,

“Incorrect credentials”

Snackbar is shown

saying, “Incorrect

credentials”

Passed

46

Table 4 Movie Search

Table 5 Movie Recommendations

Serial

No.

Description Expected

Result

Actual

Result

Result

1. Test the accuracy

of personalized

movie

recommendations

using cosine

similarity

algorithms.

Relevant and

personalized movie

recommendations are

provided to the user.

User search are

considered for

recommendation.

Passed

Serial

No.

Description Expected

Result

Actual

Result

Result

1. Test the

functionality

of movie

search based

on movie

name,

genres, or

cast

members'

names.

Relevant movie search

results are displayed.

User enters valid

movie name.

Passed

47

Table 6 Genre wise filtering

Serial

No.

Description Expected

Result

Actual

Result

Result

1. Genre wise

filtering.

The user can filter the

data by clicking on the

genre and the selected

genres movies will be

displayed.

The user can filter the

data by clicking on the

genre and the selected

genres movies will be

displayed.

Passed

Table 7 Logout

Serial

No.

Description Expected

Result

Actual

Result

Result

1. Logout Dashboard should close

and login page should

open.

Dashboard will close

and login page will

open.

Passed

48

4.2.2 Test cases for System Testing

System Testing is a level of testing that validates the complete and fully integrated software

product. The purpose of a system test is to evaluate the end-to-end system specification.

The system is integrated, then tested, once each module has been designed, tested, and

passed all of the tests.

Table 8 System testing

Serial

No.

Description Expected

Result

Actual

Result

Result

1. Overall

system

testing

All the functionalities of

the system should work

properly after

integration.

All the functionalities

of the system are

working properly after

integration.

Passed

4.3 Result Analysis

The system was tested through unit testing and proved to be effective in executing its

intended functions. The results showed that the project was able to meet its goals, but there

is still room for improvement in terms of expanding the system's capabilities and increasing

community involvement.

4.3.1 Evaluating Accuracy

In machine learning, accuracy is a common metric used to evaluate the performance of a

classifier model. Accuracy measures the proportion of correctly classified instances among

all instances in the dataset. To calculate accuracy, the first step is to divide the dataset into

two parts: a training set and a test set. The training set is used to train the model, while the

test set is used to evaluate the model's performance. In classifier model the most common

measure to evaluate accuracy are:

 Precision: Precision is the fraction of true positives among all the positive

predictions made by the model. It measures how accurate the model is when

predicting positive instances. The formula for precision is:

Precision = True Positives / (True Positives + False Positives). (8)

49

 Recall: Recall is the fraction of true positives among all the actual positive instances

in the dataset. It measures how well the model is able to identify positive instances.

The formula for recall is:

Recall = True Positives / (True Positives + False Negatives). (9)

 F1 score: The F1 score is the harmonic mean of precision and recall. It provides a

single score that balances the tradeoff between precision and recall. The F1 score

ranges from 0 to 1, where a score of 1 represents perfect precision and recall, and 0

represents the worst performance. The formula for F1 score is:

 F1 score = 2 * (Precision * Recall) / (Precision + Recall) (10)

Figure 26 Accuracy of the recommendation system

Figure 27 Confusion Matrix

50

Chapter 5: Conclusion and Future Recommendation

5.1 Conclusion

The movie recommendation system embodies a comprehensive and user-centric approach

to enhance the cinematic experience for users. The system seamlessly integrates user

authentication, advanced search and recommendation algorithms, and intuitive interfaces,

ensuring a personalized and engaging journey for movie enthusiasts. The incorporation of

content supervisors and managers adds a layer of content curation and review, ensuring the

quality and relevance of the movie database. Robust data management through MySQL

facilitates efficient storage and retrieval of user details, movie information, and reviews.

The continuous improvement aspect, marked by algorithm enhancements and regular

updates, reflects the commitment to staying current and relevant in the dynamic landscape

of film content. The system not only empowers users to discover and enjoy movies tailored

to their preferences but also provides content managers and supervisors with the tools to

contribute and curate a diverse and high-quality collection.

In essence, this movie recommendation system is designed not just as a platform for

discovering movies but as a dynamic ecosystem that fosters user engagement, content

curation, and ongoing improvement. With its user-friendly interface, comprehensive

features, and commitment to staying at the forefront of recommendation technology, the

system stands as a testament to the evolving landscape of personalized entertainment

solutions.

5.2 Future Recommendations

1. Sentiment analysis for review and comments.

2. Reward based coupon systems.

3. Integration with external platforms and streaming services for enriched data.

4. Add movie watchable platforms

5. Extend language support for a global audience

6. Add other regional languages movies.

7. Create a user-friendly mobile app for on-the-go movie discovery.

51

References

[1] “Medium,” Medium. [Online]. Available: https://towardsdatascience.com/deep-

learning-based-recommender-systems. [Accessed: 22-Jul-2023].

[2] Smu.edu. [Online]. Available: https://scholar.smu.edu/cgi/viewcontent.cgi?arti-

cle=1205&context=datasciencereview. [Accessed: 22-Jul-2023].

[3] “IMDb: Ratings, reviews, and where to watch the best movies & TV shows,” IMDb.

[Online]. Available: https://www.imdb.com/. [Accessed: 22-Jul-2023].

[4] R. Vidiyala, “How to build a movie recommendation system,” Towards Data Sci-

ence, 02-Oct-2020. [Online]. Available: https://towardsdatascience.com/how-to-

build-a-movie-recommendation-system-67e321339109. [Accessed: 22-Jul-2023].

[5] S. Das, “Create your own movie movie recommendation system,” Analytics Vidhya,

09-Nov-2020. [Online]. Available: https://www.analyt-

icsvidhya.com/blog/2020/11/create-your-own-movie-movie-recommendation-sys-

tem/. [Accessed: 22-Jul-2023].

[6] A. Goyal and A. Parulekar, “Sentiment Analysis for Movie Reviews,” Ucsd.edu.

[Online]. Available: https://cseweb.ucsd.edu/classes/wi15/cse255-a/re-

ports/fa15/003.pdf. [Accessed: 22-Jul-2023].

[7] “Connected papers,” Connectedpapers.com. [Online]. Available: https://www.con-

nectedpapers.com/. [Accessed: 22-Jul-2023].

[8] K. Naik, “Tutorial 1- Weighted hybrid technique for Recommender system,” 31-Jul-

2019. [Online]. Available: https://www.youtube.com/watch?v=_hf_y-

_sj5Y&list=PLZoTAELRMXVN7QGpcuN-Vg35Hgjp3htvi. [Accessed: 22-Jul-

2023].

[9] K. Naik, “Tutorial 2- creating recommendation systems using nearest neighbors,”

01-Aug-2019. [Online]. Available:

https://www.youtube.com/watch?v=kccT0FVK6OY&list=PLZoTAELRMXVN7QG

pcuN-Vg35Hgjp3htvi&index=3. [Accessed: 22-Jul-2023].

[10] K. Naik, “Cosine Similarity and cosine distance,” 19-Aug-2019. [Online]. Available:

https://www.youtube.com/watch?v=ie-

MjGVYw9ag&list=PLZoTAELRMXVN7QGpcuN-Vg35Hgjp3htvi&index=8. [Ac-

cessed: 22-Jul-2023].

52

[11] B. Rocca, “Introduction to recommender systems,” Towards Data Science, 02-Jun-

2019. [Online]. Available: https://towardsdatascience.com/introduction-to-recom-

mender-systems-6c66cf15ada. [Accessed: 22-Jul-2023].

[12] Art of the Problem, “How recommender systems work (Netflix/Amazon),” 28-Feb-

2020. [Online]. Available: https://www.youtube.com/watch?v=n3RKsY2H-NE. [Ac-

cessed: 22-Jul-2023].

[13] “Flask Tutorial,” Tutorialspoint.com. [Online]. Available: https://www.tutori-

alspoint.com/flask/index.htm. [Accessed: 22-Jul-2023].

[14] kindsonthegenius, “How to create an API in Python with Flask - step by step - kind-

son the genius,” Kindsonthegenius.com, 28-Jun-2022. [Online]. Available:

https://www.kindsonthegenius.com/how-to-create-an-api-in-python-with-flask-step-

by-step/. [Accessed: 22-Jul-2023].

[15] K. Arellano, “How to use API with React? ReactJS API call example & beginner’s

guide,” Rapid Blog, 10-Mar-2020. [Online]. Available: https://rapi-

dapi.com/blog/how-to-use-an-api-with-react/. [Accessed: 22-Jul-2023].

[16] A. Malviya, “Python – flask mysql connection,” Codementor.io, 05-Jun-2020.

[Online]. Available: https://www.codementor.io/@adityamalviya/python-flask-

mysql-connection-rxblpje73. [Accessed: 22-Jul-2023].

Appendices:

Screenshots of UI:

i. Login Page

ii. Sign Up Page

iii. Forgot Password

iv. Reset Password

v. Home Page

vi. Movies Page for Admin

vii. Add Movie Page

viii. Add Admin Page

 Source code:

Login

const LoginForm = () => {

 const navigate = useNavigate();

 const [email, setEmail] = useState("");

 const [password, setPassword] = useState("");

 const [error, setError] = useState("");

 const [showPassword, setShowPassword] = useState(false);

 const [openSnackbar, setOpenSnackbar] = useState(false);

 const handleSnackbarClose = (event, reason) => {

 if (reason === "clickaway") {

 return;

 }

 setOpenSnackbar(false);

 };

 const handleSnackbarOpen = () => {

 setOpenSnackbar(true);

 };

 const handleSubmit = async (e) => {

 e.preventDefault();

 try {

 const response = await axios.post("http://localhost:8005/auth/login", {

 email,

 password,

 });

 const { token } = response.data;

 localStorage.setItem("token", token);

 handleSnackbarOpen();

 setTimeout(() => {

 navigate("/home");

 }, 500);

 } catch (error) {

 setError("Invalid Credentials. Please try again.");

 }

 };

Signup

function ResetPassword() {

 const { token } = useParams();

 const navigate = useNavigate();

 const [formData, setFormData] = useState({

 password: "",

 confirmPassword: "",

 });

 const [error, setError] = useState("");

 const [passwordsMatch, setPasswordsMatch] = useState(true);

 const [showPassword, setShowPassword] = useState(false);

 const [showConfirmPassword, setShowConfirmPassword] = useState(false);

 const handleChange = (e) => {

 const { name, value } = e.target;

 setFormData((prevData) => ({

 ...prevData,

 [name]: value,

 }));

 if (name === "confirmPassword" && value !== "") {

 setPasswordsMatch(value === formData.password);

 }

 };

 const handleShowPassword = () => {

 setShowPassword(!showPassword);

 };

 const handleShowConfirmPassword = () => {

 setShowConfirmPassword(!showConfirmPassword);

 };

 const handleSubmit = async (e) => {

 e.preventDefault();

 setError(""); // Clear previous error message

 try {

 if (!passwordsMatch) {

 throw new Error("Passwords do not match");

 }

 // Make an API request to reset the password

 await axios.post(`http://localhost:8005/auth/reset-password/${token}`, {

 password: formData.password,

 });

 // Display a success message or redirect to a login page

 alert("Password reset successfully");

 navigate("/login");

 } catch (error) {

 console.error("Reset Password failed:", error);

 setError(error.message || "Failed to reset password. Please try again.");

 }

 };

Movie

const MoviePage = () => {

 const navigate = useNavigate();

 const [searchText, setSearchText] = useState("");

 const [userData, setUserData] = useState("");

 const [movies, setMovies] = useState([]);

 const [searchResults, setSearchResults] = useState([]);

 const [recommendedMovies, setRecommendedMovies] = useState([]);

 useEffect(() => {

 getUserData();

 getAllMovies();

 }, []);

 const getUserData = () => {

 const storedToken = localStorage.getItem("token");

 if (storedToken) {

 const decodedToken = jwtDecode(storedToken);

 setUserData(decodedToken);

 }

 }

 const getAllMovies = () => {

 axios

 .get("http://localhost:8005/movies")

 .then((response) => {

 setMovies(response.data);

 })

 .catch((error) => {

 console.error("Error fetching data: ", error);

 });

 };

 const handleAddAdmin = () => {

 navigate("/admin");

 };

 const handleInlineSearch = (searchText) => {

 setSearchText(searchText);

 // Filter the movie list based on the search text

 const results = movies.filter(

 (movie) =>

 movie.title.toLowerCase().includes(searchText.toLowerCase()) ||

 movie.genre.toLowerCase().includes(searchText.toLowerCase())

);

 setSearchResults(results);

 if (results.length > 0) {

 // Extract the genre of the first movie in the search results

 const genre = results[0].genre;

 // Filter recommended movies with the same genre, excluding the first movie

 const recommendations = movies.filter(

 (movie) => movie.genre === genre && movie.id !== results[0].id

);

 setRecommendedMovies(recommendations.slice(0, 5)); // Ensure at least 5 recommended movies

 } else {

 setRecommendedMovies([]);

 }

 };

Home

const Home = () => {
 const [homeGenreList, setHomeGenreList] = useState([]);

 const [selectedGenres, setSelectedGenres] = useState([]);

 const [currMovies, setCurrMovies] = useState([]);

 const [recommendedMovies, setRecommendedMovies] = useState([]);

 const [sortOrder, setSortOrder] = useState("aesc");

 const [movies, setMovies] = useState([]);

 const moviesSectionRef = useRef(null);

 const navigate = useNavigate();

 useEffect(() => {

 // Fetch movies and genres from your NestJS API

 axios

 .get("/movies")

 .then((response) => {

 setMovies(response.data);

 // Extract unique genres from the movies

 const uniqueGenres = [

 ...new Set(response.data.map((movie) => movie.genre)),

];

 setHomeGenreList(uniqueGenres);

 })

 .catch((error) => {

 console.error("Error fetching data: ", error);

 });

 }, []);

 useEffect(() => {

 if (selectedGenres.length > 0) {

 // Fetch movies based on selected genres from your NestJS API

 axios.get(`/movies/filterByGenres?genres=${selectedGenres.join(",")}`)

 .then((response) => {

 let sortedMovies = response.data;

 if (sortOrder === "desc") {

 sortedMovies = sortedMovies.sort(

 (a, b) => b.vote_average - a.vote_average

);

 } else {

 sortedMovies = sortedMovies.sort(

 (a, b) => a.vote_average - b.vote_average

);

 }

 setCurrMovies(sortedMovies);

 })

 .catch((error) => {

 console.error("Error fetching filtered movies: ", error);

 });

 } else {

 // If no genres are selected, show all movies

 setCurrMovies([...movies]);

 }

 }, [selectedGenres, sortOrder, movies]);

 const onTagClick = (genreId) => {

 let isPresent = selectedGenres.includes(genreId);

 if (isPresent) {

 setSelectedGenres(selectedGenres.filter((item) => item !== genreId));

 } else {

 setSelectedGenres([...selectedGenres, genreId]);

 }

 window.scrollTo({

 top: moviesSectionRef.current.offsetTop,

 behavior: "smooth",

 });

 };

 const handleClick = (id) => {

 navigate(`/movie/${id}`);

 };

 const renderMovies = () =>

 currMovies.map((movie) => (

 <div key={movie.id} onClick={() => handleClick(movie.id)}>

 <MovieCard movie={movie} />

 </div>

));

Add Movies

const AddMovie = () => {

 const [movieData, setMovieData] = useState({

 title: "",

 year: null,

 contentRating: "",

 runtime: "",

 description: "",

 rating: null,

 poster: "",

 genre: "",

 director: "",

 metascore: null,

 writer: "",

 stars: "",

 trailer: "",

 });

 const navigate = useNavigate();

 const handleChange = (e) => {

 const { name, value } = e.target;

 let parsedValue = value;

 if (name === "year" || name === "rating" || name === "metascore") {

 // Use parseFloat for rating and metascore, and parseInt for year

 parsedValue = name === "year" ? parseInt(value) : parseFloat(value);

 }

 // Uncomment the following line to update the state

 setMovieData({ ...movieData, [name]: parsedValue });

 };

 const handleSubmit = async (e) => {

 e.preventDefault();

 try {

 const response = await axios.post(

 `http://localhost:8005/movies/create`,

 movieData

);

 navigate("/movie");

 if (response.status === 200) {

 console.log("Movie data sent successfully!");

 } else {

 console.error("Request failed with status:", response.status);

 }

 } catch (error) {

 console.error("An error occurred:", error);

 }

 };

Backend

@Controller('movies')

export class MoviesController {

 constructor(

 private readonly moviesService: MoviesService,

 private readonly recommendationService: RecommendationService,

) {}

 @Post('create')

 create(@Body() createMovieDto: CreateMovieDto) {

 return this.moviesService.create(createMovieDto);

 }

 @Get()

 findAll() {

 return this.moviesService.findAll();

 }

 @Get('superAdmin')

 findAllBySuperAdmin() {

 return this.moviesService.findAllBySuperAdmin();

 }

 @Get('filterByGenres')

 filterByGenres(@Query('genres') genres: string) {

 const selectedGenres = genres.split(',');

 return this.moviesService.filterByGenres(selectedGenres);

 }

 @Post(':id/comments')

 createComment(@Param('id') movieId: string, @Body() data: { comment: string; userId: Auth;

userRating?: number }) {

 return this.moviesService.createComment(+movieId, data);

 }

 @Get(':id/comments')

 getComments(@Param('id') movieId: string){

 return this.moviesService.getComments(+movieId);

 }

 @Get(':id')

 findOne(@Param('id') id: string) {

 return this.moviesService.findOne(+id);

 }

 @Patch(':id')

 update(@Param('id') id: string, @Body() updateMovieDto: UpdateMovieDto) {

 return this.moviesService.update(+id, updateMovieDto);

 }

 @Delete(':id')

 remove(@Param('id') id: string) {

 return this.moviesService.remove(+id);

 }

}

